Skip to main content
Log in

A new design for obtaining of white zein micro- and nanoparticles powder: antisolvent-dialysis method

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this work was propose antisolvent-dialysis as a new, easy, one-step and reproducible method for obtaining white zein micro- and nanoparticles powder. Firstly, the study by SEM of white zein powder predicted micro- and nanoparticles with spherical morphology and average diameters of 243.2 ± 94.5 nm for nanoparticles and 0.74 ± 0.2 μm for microparticles. UV–Vis predicted lower absorbance of 250–500 nm for white zein powder compared to commercial yellow zein powder. FT-IR showed shifting of the main bands to the right, due to changes in particle-shaped microstructure that acquires white zein powder compared to yellow zein powder. In TGA white zein powder showed a decomposition range from 214 to 400 °C, while yellow zein powder from 240 to 400 °C. Therefore, antisolvent-dialysis is new method to obtain white zein micro- and nanoparticles with potential applications such as polymer matrix and white natural coloring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed S, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9: 1-7 (2016)

    Google Scholar 

  • An B, Wu X, Li M, Chen Y, Li F, Yan X, Wang J, Chaoxu L, Brennan C. Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol. Int. J. Food. Sci. Tech. 51: 2621-2629 (2016)

    CAS  Google Scholar 

  • Aswathy RG, Sivakumar B, Brahatheeswaran D, Fukuda T, Yoshida Y, Maekawa T, Kumar DS. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Adv. Nat. Sci. Nanosci. Nanotechnol. 3: 025006 (2012)

    Google Scholar 

  • Barreras-Urbina CG, Ramírez-Wong B, López-Ahumada GA, Burruel-Ibarra SE, Martínez-Cruz O, Tapia-Hernández JA, Rodriguez-Felix F. Nano-and micro-particles by nanoprecipitation: possible application in the food and agricultural industries. Int. J. Food Prop. 19: 1912-1923 (2016)

    Google Scholar 

  • Barreras-Urbina CG, Rodríguez-Félix F, López-Ahumada GA, Burruel-Ibarra SE, Tapia-Hernández JA, Castro-Enríquez DD, Rueda-Puente EO. Microparticles from wheat-gluten proteins soluble in ethanol by nanoprecipitation: preparation, characterization, and their study as a prolonged-release fertilizer. Int. J. Polym. Sci. 2018:1042798 (2018)

  • Baspinar Y, Üstündas M, Bayraktar O, Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: development and in vitro characterisation. Saudi Pharm. J. 26: 323-334 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Bhushani JA, Kurrey NK, Anandharamakrishnan C. Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in vitro permeability. J. Food Eng. 199: 82-92 (2017)

    CAS  Google Scholar 

  • Briz-Cid N, Pose-Juan E, Rial-Otero R, Simal-Gándara J. Proteome changes in Garnacha Tintorera red grapes during post-harvest drying. LWT Food Sci. Technol. 69: 608-613 (2016)

    CAS  Google Scholar 

  • Cheng CJ, Ferruzzi M, Jones OG. Fate of lutein-containing zein nanoparticles following simulated gastric and intestinal digestion. Food Hydrocolloid. 87: 229-236 (2019)

    CAS  Google Scholar 

  • Dai L, Sun C, Li R, Mao L, Liu F, Gao Y. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 237: 1163-1171 (2017)

    CAS  PubMed  Google Scholar 

  • Dalwadi G, Benson HA, Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm. Res. 22: 2152-2162 (2005)

    CAS  PubMed  Google Scholar 

  • De Boer FY, Kok RNU, Imhof A, Velikov KP. White zein colloidal particles: synthesis and characterization of their optical properties on the single particle level and in concentrated suspensions. Soft Matter 14: 2870-2878 (2018)

    PubMed  Google Scholar 

  • Do Carmo CS, Maia C, Poejo J, Lychko I, Gamito P, Nogueira I, Bronze MR, Serra AT, Duarte CM. Microencapsulation of α-tocopherol with zein and β-cyclodextrin using spray drying for colour stability and shelf-life improvement of fruit beverages. RSC Adv. 7: 32065-32075 (2017)

    Google Scholar 

  • Doost AS, Muhammad DRA, Stevens CV, Dewettinck K, Van der Meeren P. Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocolloid. 83: 190-201 (2018)

    Google Scholar 

  • Ebert S, Koo CK, Weiss J, McClements DJ. Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles. Food Res. Int. 92: 48-55 (2017)

    CAS  PubMed  Google Scholar 

  • Grant ML, Stowell GW, Menkin P. Diketopiperazine microparticles with defined specific surface areas. Washington, DC: U.S, Patent No. 8,734,845 (2014)

  • Hu K, McClements DJ. Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles. Food Hydrocoll. 44: 101-108 (2015)

    CAS  Google Scholar 

  • Huang X, Dai Y, Cai J, Zhong N, Xiao H, McClements DJ, Hu K. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll. 64: 157-165 (2017)

    CAS  Google Scholar 

  • Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci. Technol. 34: 109-123 (2013)

    CAS  Google Scholar 

  • Li F, Chen Y, Liu S, Qi J, Wang W, Wang C, Kong W. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate. Int. J. Nanomed. 12: 8197 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Xu Y, Sun X, Wang S, Wang J, Zhu J, Wang D, Zhao L. Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation. Food Hydrocoll. 84: 379-388 (2018)

  • Liu G, Wei D, Wang H, Hu Y, Jiang Y. Self-assembly of zein microspheres with controllable particle size and narrow distribution using a novel built-in ultrasonic dialysis process. Chem. Eng. J. 284: 1094-1105 (2016)

    CAS  Google Scholar 

  • Liu G, Feng J, Zhu W, Jiang Y. Zein self-assembly using the built-in ultrasonic dialysis process: microphase behavior and the effect of dialysate properties. Colloid. Polym. Sci. 296: 73-181 (2018)

    Google Scholar 

  • Luo Y, Wang Q. Zein-based micro- and nano-particles for drug and nutrient delivery: a review. J. Appl. Polym. Sci. 131: 40696 (2014)

  • Melzig S, Finke JH, Schilde C, Kwade A. Formation of long-term stable amorphous ibuprofen nanoparticles via antisolvent melt precipitation (AMP). Eur. J. Pharm. Biopharm. 131: 224-231 (2018)

    CAS  PubMed  Google Scholar 

  • Mensah TO, Wang B, Bothun G, Davis V, Winter J. Nanotechnology Commercialization: Manufacturing Processes and Products. Wiley, New York (2017)

    Google Scholar 

  • Palencia M, Rivas BL, Valle H. Size separation of silver nanoparticles by dead-end ultrafiltration: Description of fouling mechanism by pore blocking model. J. Membrane Sci. 455: 7-14 (2014)

    CAS  Google Scholar 

  • Pascoli M, de Lima R, Fraceto LF. Zein Nanoparticles and strategies to improve colloidal stability: a mini-review. Front. Chem. 6: 6 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Patel AR, Velikov KP. Zein as a source of functional colloidal nano-and microstructures. Curr. Opin. Colloid Interface Sci. 19: 450-458 (2014)

    CAS  Google Scholar 

  • Podaralla S, Perumal O. Influence of formulation factors on the preparation of zein nanoparticles. Aaps Pharms. 13: 919-927 (2012)

    CAS  Google Scholar 

  • Ren X, Ma H, Mao S, Zhou H. Effects of sweeping frequency ultrasound treatment on enzymatic preparations of ACE-inhibitory peptides from zein. Eur. Food Res. Technol. 238: 435-442 (2014)

    CAS  Google Scholar 

  • Rodríguez-Félix F, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, Juárez J, Ruiz-Cruz S, López-Ahumada GA, Carbajal-Millan E, Castro-Enríquez DD, Barreras-Urbina CG, Tapia-Hernández JA. Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J. Food. Sci. 84: 2883-2897 (2019)

  • Sessa DJ, Eller FJ, Palmquist DE, Lawton JW. Improved methods for decolorizing corn zein. Ind. Crops Prod. 18: 55-65 (2003)

    CAS  Google Scholar 

  • Sessa DJ, Palmquist DE. Effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing yellow zein. Bioresour. Technol. 99: 6360-6364 (2008)

    CAS  PubMed  Google Scholar 

  • Sessa DJ, Woods KK. Purity assessment of commercial zein products after purification. J Am. Oil Chem. Soc. 88: 1037-1043 (2011)

    CAS  Google Scholar 

  • Solís CA, Vélez CA, Ramírez-Navas JS. Membrane technology: ultrafi ltration. Entre Ciencia e Ingeniería 11(22): 26-36 (2017)

    Google Scholar 

  • Tapia-Hernandez JA, Torres-Chavez PI, Ramirez-Wong B, Rascon-Chu A, Plascencia-Jatomea M, Barreras-Urbina CG, Rangel-Vazquez NA, Rodriguez-Felix F. Micro-and nanoparticles by electrospray: advances and applications in foods. J. Agric. Food Chem. 63: 4699-4707 (2015)

    CAS  PubMed  Google Scholar 

  • Tapia-Hernández JA, Rodríguez-Félix F, Katouzian I. Nanocapsule formation by electrospraying. pp. 320-345. In: Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Jafari, SM. Academic Press (2017)

  • Tapia-Hernández JA, Rodríguez-Felix F, Juárez-Onofre JE, Ruiz-Cruz S, Robles-García MA, Borboa-Flores J, Wong-Corral FJ, Cinco-Moroyoqui FJ, Castro-Enríquez FJ, Del-Toro-Sánchez CL. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: a strategy for prevention of chronic degenerative diseases. Food. Res. Int. 111: 451-471 (2018a)

    PubMed  Google Scholar 

  • Tapia-Hernández JA, Rodríguez-Félix DE, Plascencia-Jatomea M, Rascn-Chu A, López-Ahumada GA, Ruiz-Cruz S, Barreras-Urbina CG, Rodríguez-Félix F. Porous wheat gluten microparticles obtained by electrospray: preparation and characterization. Adv. Polym. Technol. 37: 2314-2324 (2018b)

    Google Scholar 

  • Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, Ruiz-Cruz S, Juárez J, Castro-Enríquez DD, Barreras-Urbina CG, López-Ahumada GA, Rodríguez-Félix F. Gallic acid-loaded zein nanoparticles by electrospraying process. J. Food. Sci. 84: 818-831 (2019a)

    PubMed  Google Scholar 

  • Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, Juárez-Onofre JE, Ruiz-Cruz S, Carvajal-Millan E, López-Ahumada GA, Castro-Enriquez DD, Barreras-Urbina CG, Rodríguez-Felix F. Prolamins from cereal by-products: classification, extraction, characterization and its applications in micro-and nanofabrication. Trends Food Sci. Technol. 90: 111–132 (2019b)

    Google Scholar 

  • Wang Y, Padua GW. Formation of zein microphases in ethanol–water. Langmuir 26: 12897-12901 (2010)

  • Wang Y, Padua GW. Nanoscale characterization of zein self-assembly. Langmuir 28: 2429-2435 (2012)

    CAS  PubMed  Google Scholar 

  • Wang M, Fu Y, Chen G, Shi Y, Li X, Zhang H, Shen Y. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method. Food Hydrocoll. 77: 577-587 (2018a)

    CAS  Google Scholar 

  • Wang T, Qi J, Ding N, Dong X, Zhao W, Lu Y, Wang C, Wu W. Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery. Int. J. Pharm. 546: 10-19 (2018b)

    CAS  PubMed  Google Scholar 

  • Yadav D, Kumar N. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int. J. Pharm. 477: 564-577 (2014)

    CAS  PubMed  Google Scholar 

  • Zhang X, Chen H, Qian F, Cheng Y. Preparation of itraconazole nanoparticles by anti-solvent precipitation method using a cascaded microfluidic device and an ultrasonic spray drier. Chem. Eng. J. 334: 2264-2272 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

M.Sc. José Agustín Tapia Hernández, thanks CONACYT for the scholarship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Agustín Tapia-Hernández.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Félix, F., Del-Toro-Sánchez, C.L. & Tapia-Hernández, J.A. A new design for obtaining of white zein micro- and nanoparticles powder: antisolvent-dialysis method. Food Sci Biotechnol 29, 619–629 (2020). https://doi.org/10.1007/s10068-019-00702-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00702-9

Keywords

Navigation