Skip to main content
Log in

Analytical method validation for terbutryn using gas chromatography/ion trap, gas chromatography/mass selective detector, and liquid chromatography/triple quadrupole mass spectrometers

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Analytical methods including solvent extraction followed by gas chromatography/ion-trap (GC/IT) with scan and MS/MS mode, a GC/mass selective detector (GC/MSD), and liquid chromatography/triple quadrupole mass spectrometers (LC/MS/MS) were optimized to identify and quantify terbutryn. The spike recovery was 96.5% using GC/IT with scan mode and 103.5% with MS/MS mode, 90.3% by GC/MSD, and 92.5% by LC/MS/MS. The limit of detection (LOD) was 0.0015 mg/kg by GC/IT with scan, 0.026 mg/kg with MS/MS mode, 0.015 mg/kg with GC/MSD, and 0.026 mg/kg by LC/MS/MS. Of the four methods, GC/IT with scan mode was determined to be the most sensitive (with LOD: 0.0015 mg/kg and limit of quantitation (LOQ): 0.0047 mg/kg), rapid (retention time: 9.6 min) and the most precise method (relative standard deviation: 17%) for the quantification of terbutryn. GC/IT with scan mode proved to be the more sensitive analytical method for terbutryn than other methods in this study, showing better accuracy and rapid analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S, Zhao P, Min G, Fang G. Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography–mass spectrometry. J. Chromatogr. A. 1165: 166–171 (2007).

    Article  CAS  Google Scholar 

  2. Frıas S, Sánchez MJ, Rodrıguez MA. Determination of triazine compounds in ground water samples by micellar electrokinetic capillary chromatography. Anal. Chem. Acta. 503: 271–278 (2004).

    Article  Google Scholar 

  3. Larsen L, Sørensen SR, Aamand J. Mecoprop, isoproturon, and atrazine in and above a sandy aquifer: vertical distribution of mineralization potential. Environ. Sci. Technol. 34: 2426–2430 (2000).

    Article  CAS  Google Scholar 

  4. Nilson EL, Unz RF. Antialgal substances for iodine-disinfected swimming pools. Appl. Environ. Microbiol. 34: 815–822 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Velisek J, Stara A, Kolarova J, Svobodova Z. Biochemical, physiological and morfological responses in common carp (Cyprinus carpio L.) after long-term exposure to terbutryn in real environmental concentration. Pest Biochem. Physiol. 100: 305–313 (2011).

    Article  CAS  Google Scholar 

  6. U.S. Environmental Protection Agency. Fact Sheet Number 104: Terbutryn, U.S. EPA, Washington, DC, USA (1986).

  7. Villarini M, Scassellati-Sforzolini G, Moretti M, Pasquini R. In vitro genotoxicity of terbutryn evaluated by the alkaline single-cell microgel-electrophoresis” comet” assay. Cell Biol. Toxicol. 16: 285–292 (2000).

    Article  CAS  Google Scholar 

  8. NHMRC N. Australian drinking water guidelines paper 6 national water quality management strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, Australia (2011).

    Google Scholar 

  9. Lewis RJ. Sax’s dangerous properties of industrial materials. 10th ed. Vol. 3. Van Nostrand Reinhold, New York, USA (2000).

    Google Scholar 

  10. Lehotay SJ. Multiclass, multiresidue analysis of pesticides, strategies for Encyclopedia of Analytical Chemistry. Wiley, Chichester (2000).

    Google Scholar 

  11. Quednow K, Püttmann W. Monitoring terbutryn pollution in small rivers of Hesse, Germany. J. Environ. Monitor. 9: 1337–1343 (2007).

    Article  CAS  Google Scholar 

  12. Lapworth DJ, Gooddy DC, Stuart ME, Chilton PJ, Cachandt GC, Knapp M, Bishop S. Pesticides in groundwater: some observations on temporal and spatial trends. Water Environ. J. 20: 55–64 (2006).

    Article  CAS  Google Scholar 

  13. Djozan D, Ebrahimi B, Mahkam M, Farajzadeh MA. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber. Anal. Chem. Acta. 674: 40–48 (2010).

    Article  CAS  Google Scholar 

  14. Djozan D, Mahkam M, Ebrahimi B. Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer: application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion. J. Chromatogr. A. 1216: 2211–2219 (2009).

    Article  CAS  Google Scholar 

  15. Gao S, You J, Zheng X, Wang Y, Ren R, Zhang R, Bai Y, Zhang H. Determination of phenylurea and triazine herbicides in milk by microwave assisted ionic liquid microextraction high-performance liquid chromatography. Talanta 82: 1371–1377 (2010).

    Article  CAS  Google Scholar 

  16. Hernández F, Serrano R, Miralles MC, Font N. Gas and liquid chromatography and enzyme linked immuno sorbent assay in pesticide monitoring of surface water from the western mediterranean (Comunidad Valenciana, Spain). Chromatographia 42: 151–158 (1996).

    Article  Google Scholar 

  17. Maloschik E, Ernst A, Hegedűs G, Darvas B, Székács A. Monitoring water-polluting pesticides in Hungary. Microchem. J. 85: 88–97 (2007).

    Article  CAS  Google Scholar 

  18. Adams NH, Levi PE, Hodgson E. In vitro studies of the metabolism of atrazine, simazine, and terbutryn in several vertebrate species. J. Agric. Food. Chem. 38: 1411–1417 (1990).

    Article  CAS  Google Scholar 

  19. Carabias-Martínez, R., Rodríguez-Gonzalo E, Herrero-Hernández E, Sánchez-San Román FJ, Flores MG. Determination of herbicides and metabolites by solid-phase extraction and liquid chromatography: Evaluation of pollution due to herbicides in surface and groundwaters. J. Chromatogr. A. 950: 157–166 (2002).

  20. Pacáková V, Štulík K, Jiskra J. High-performance separations in the determination of triazine herbicides and their residues. J. Chromatogr. A. 754: 17–31 (1996).

    Article  Google Scholar 

  21. Patsias J, Papadopoulou-Mourkidou E. Rapid method for the analysis of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction and gas chromatography-ion trap mass spectrometry. J. Chromatogr. A. 740: 83–98 (1996).

    Article  CAS  Google Scholar 

  22. Voyksner RD, Pack T. Investigation of collisional‐activation decomposition process and spectra in the transport regions of an electrospray single‐quadrupole mass spectrometer. Rapid Commun. Mass Spectrom. 5: 263–268 (1991).

    Article  CAS  Google Scholar 

  23. Zambonin CG, Palmisano F. Determination of triazines in soil leachates by solid-phase microextraction coupled to gas chromatography–mass spectrometry. J. Chromatogr. A. 874: 247–255 (2000).

    Article  CAS  Google Scholar 

  24. Bagheri H, Vreuls JJ, Ghijsen RT, Brinkman UT. Determination of triazine herbicides in surface and drinking waters by off-line combination of liquid chromatography and gas chromatography-mass spectrometry. Chromatographia 34: 5–13 (1992).

    Article  CAS  Google Scholar 

  25. Postigo C, de Alda MJ, Barceló D, Ginebreda A, Garrido T, Fraile J. Analysis and occurrence of selected medium to highly polar pesticides in groundwater of Catalonia (NE Spain): An approach based on on-line solid phase extraction–liquid chromatography–electrospray-tandem mass spectrometry detection. J. Hydrol. 383: 83–92 (2010).

    Article  CAS  Google Scholar 

  26. Muir DC. Determination of terbutryne and its degradation products in water, sediments, aquatic plants and fish. J. Agric. Food. Chem. 28: 714–719 (1980).

    Article  CAS  Google Scholar 

  27. Yang W, Zhang H, Liu Y, Wang J, Zhang YC, Dong AJ, Zhao HT, Sun CH, Cui J. Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography–mass spectrometry: Determination of 88 pesticides in berries using SPE and GC–MS. Food Chem. 127:855–865 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by High Value added Food Technology Development Program (Project Nos. 314078-3 and 316050-03) from Ministry of Agriculture, Food, and Rural Affairs (Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Geun Lee.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.W., Lee, J., Choi, H. et al. Analytical method validation for terbutryn using gas chromatography/ion trap, gas chromatography/mass selective detector, and liquid chromatography/triple quadrupole mass spectrometers. Food Sci Biotechnol 27, 1525–1530 (2018). https://doi.org/10.1007/s10068-018-0355-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0355-8

Keywords

Navigation