Skip to main content
Log in

Ultrasound-assisted extraction of bioactive compounds from Malva sylvestris leaves and its comparison with agitated bed extraction technique

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of ultrasound-assisted extraction (UAE) variables—namely extraction temperature (40–60 °C), ultrasonic power (50–150 W), and sonication time (40–60 min)—on the extractive value (EV) of bioactive phenolics from Malva sylvestris leaves were investigated and optimized using Response surface methodology. The effects of extraction solvents (ethanol, ethyl acetate, and n-hexane) on EV, free radical scavenging activity (FRSA), total phenolic content (TPC), and major bioactive phenolics were studied using agitated bed extraction (ABE), and the results were compared with the UAE findings. Under the optimal UAE conditions (48 °C, 110.00 W, and 48.77 min) the experimental EV was 279.89 ± 0.21 mg/g with 71.12 ± 0.15% DPPHsc, 73.35 ± 0.11% ABTSsc, and a TPC of 152.25 ± 0.14 mg GAE/g. Ethanolic ABE results in higher EV (320.16 ± 0.25 mg g−1) compared to UAE, while the FRSA and TPC values were reduced. HPLC analysis revealed that the concentration of bioactive phenolics increased significantly (p < 0.05) under the optimal UAE conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oroian M, Escriche I. Antioxidants: characterization, natural sources, extraction and analysis. Food Res. Int. 74: 10–36 (2015)

    Article  CAS  Google Scholar 

  2. Hamrouni-Sellami I, Rahali FZ, Rebey IB, Bourgou S, Limam F, Marzouk B. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioprocess Technol. 6: 806–817 (2013)

    Article  CAS  Google Scholar 

  3. Martinez JL. Supercritical fluid extraction of nutraceuticals and bioactive compounds, New York. United States of America, CRC Press. (2008)

    Google Scholar 

  4. Feng H, Yang W. Power ultrasound. In: Handbook of food science, technology, and engineering, edited by Hui, Y.H. New York, CRC Press. (2005)

  5. Sharma A, Gupta MN. Oil extraction from almond, apricot and rice by three-phase partitioning after ultrasonication. Eur. J. Lipid Sci. Tech. 106: 183–186 (2004)

    Article  CAS  Google Scholar 

  6. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17: 300–312 (2006)

    Article  CAS  Google Scholar 

  7. Zhou B, Feng H, Lou Y. Ultrasound enhanced sanitizer efficacy in reduction of Escherichia coli O157:H7 population on spinach leaves. J. Food Sci. 74: 308–313 (2009)

    Article  Google Scholar 

  8. Baumann A, Martin SE, Feng H. Removal of Listeria monocytogenes biofilms from stainless steel using ultrasound and ozone. J. Food Prot. 72: 1306–1309 (2009)

    Article  Google Scholar 

  9. Raviyan P, Zhang Z, Feng H. Ultrasonication for tomato pectin methyl esterase inactivation: effect of cavitation intensity and temperature on inactivation. J. Food Eng. 70: 189–196 (2005)

    Article  Google Scholar 

  10. Zhang Z, Feng H, Niu Y, Eckhoff SR. Starch recovery from degermed corn flour and hominy feed using power ultrasound. Cereal Chem. 82: 447–449 (2005)

    Article  CAS  Google Scholar 

  11. Zhang HQ, Barbosa-Canovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JT. Nonthermal processing technologies for food, United Kingdom, Wiley, IFT Press. (2011)

    Google Scholar 

  12. Garcia-Castello EM, Rodriguez-Lopez AD, Mayor L, Ballesteros R, Conidi C, Cassano A. Optimization of conventional and ultrasound-assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT Food Sci. Technol. 64: 1114–1122 (2015)

    Article  CAS  Google Scholar 

  13. Jian-Bing J, Xiang-Hong L, Mei-Qiang C, Zhi-Chao X. Improvement of leaching process of Geniposide with ultrasound. Ultrason. Sonochem. 13: 455–462 (2006)

    Article  Google Scholar 

  14. Rostagno MA, Palma M, Barroso CG. Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A 1012: 119–128 (2003)

    Article  CAS  Google Scholar 

  15. Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8: 303–313 (2001)

    Article  CAS  Google Scholar 

  16. Cristina Soria A, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol. 21: 323–331 (2010)

    Article  Google Scholar 

  17. Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34: 540–560 (2017)

    Article  CAS  Google Scholar 

  18. Samavatia V, Manoochehrizade A. Polysaccharide extraction from Malva sylvestris and its antioxidant activity. Int. J. Biol. Macromolec. 60: 427–436 (2013)

    Article  Google Scholar 

  19. Pirbalouti AG, Yousefi M, Heshmetollah N, Karimi I, Koohpayeh A. Bioactivity of Malva Sylvestris L., a Medicinal Plant from Iran. E. J. Bio. 5: 62–66 (2009)

  20. Wang ZY. Impact of anthocyanin from Malva sylvestris on plasma lipids and free radical. J For Res. 16: 228–232 (2005).

    Article  CAS  Google Scholar 

  21. Bimakr M, Russly AR, Farah ST, Noranizan MA, Zaidul ISM, Ali G. Characterization of valuable compounds from winter melon (Benincasa hispida (Thunb.) Cogn.) seeds using supercritical carbon dioxide extraction combined with pressure swing technique. Food Bioprocess Tech. 9: 396–406 (2016)

  22. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152–178 (1999)

    Article  CAS  Google Scholar 

  23. Sehati N, Dalali N, Soltanpour S, Seyed Dorraji MS. Application of hollow fiber membrane mediated with titanium nanowire/reduced grapheme oxide nanocomposite in preconcentration of clotrimazole and tylosin. J. Chromatogr. A 1420: 46–53 (2015)

    Article  CAS  Google Scholar 

  24. Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93: 47–56 (2005)

    Article  CAS  Google Scholar 

  25. Weng WL, Liu YC, Lin CW. Studies on the optimum models of the dairy product Kou Woan Lao using response surface methodology. Asian-Australasian J. Anim. Sci. 14: 1470–1476 (2001)

    Article  Google Scholar 

  26. Deng Y, Zhao Y. Effect of pulsed vacuum and ultrasound osmo-pretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Sci. Technol. 41: 1575–1585 (2008)

    Article  CAS  Google Scholar 

  27. He L, Xu H, Liu X, He W, Yuan F, Hou Z. Identification of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant capacities by HPLC-ABTS+ assay. Food Res. Int. 44: 1161–1167 (2011)

    Article  CAS  Google Scholar 

  28. Anesini C, Ferraro GE, Filip R. Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J. Agric. Food Chem. 56: 9225–9229 (2008)

    Article  CAS  Google Scholar 

  29. Gan CY, Latiff AA. Optimization of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem. 124: 1277–1283 (2011)

    Article  CAS  Google Scholar 

  30. Bimakr M, Russly AR, Farah ST, Noranizan MA, Zaidul ISM, Ali G. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules 17: 11748–11762 (2012)

    Article  CAS  Google Scholar 

  31. Caresa MG, Vargas Y, Gaete L, Sainz J, Alarcon J. Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina. Phys. Procedia. 3: 169–178 (2010)

    Article  Google Scholar 

  32. Bimakr M, Russly AR, Farah ST, Noranizan MA, Zaidul ISM, Ali G. Ultrasound-assisted extraction of valuable compounds from winter melon (Benincasa hispida) seeds. Int. Food Res. J. 20: 331–338 (2013)

    Google Scholar 

  33. Zhang ZS, Wang LJ, Li D, Jiao SS, Chen Z XD, Mao H. Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol. 62: 192–198 (2008)

    Article  CAS  Google Scholar 

  34. Sivakumar V, Ravi Verma V, Rao PG, Swaminathan G. Studies on the use of power ultrasound in solid-liquid myrobalan extraction process. J. Clean. Prod. 15: 1813–1818 (2007)

    Article  Google Scholar 

  35. Shekhar UK, Tiwari BK, Smyth TJ, Donnell CP. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed using response surface methodology. Ultrason. Sonochem. 23: 308–316 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandana Bimakr.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bimakr, M., Ganjloo, A., Zarringhalami, S. et al. Ultrasound-assisted extraction of bioactive compounds from Malva sylvestris leaves and its comparison with agitated bed extraction technique. Food Sci Biotechnol 26, 1481–1490 (2017). https://doi.org/10.1007/s10068-017-0229-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0229-5

Keywords

Navigation