Skip to main content
Log in

Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A nano-sized double-walled carrier composed of chitosan and β-lactoglobulin (β-Lg) for oral administration of epigallocatechin gallate (EGCG) was developed to achieve a prolonged release of EGCG in the gastrointestinal tract. Carboxymethyl chitosan (CMC) solution was added dropwise to chitosan hydrochloride (CHC) containing EGCG to form a primary coating by ionic complexation. Subsequently, β-Lg was added to create a secondary layer by ionic gelation. The obtained EGCG-loaded chitosan/β-Lg nanoparticles had sizes between 100 and 500 nm and zeta potentials ranging from 10 to 35mV. FT-IR spectroscopy revealed a high number of hydrogen-bonding sites in the nanoparticles, which could incorporate EGCG, resulting in high encapsulation efficiency. EGCG incorporated in the primary coating was released slowly over time by diffusion from the swollen CMC-CHC matrix after the outer layer of β-Lg was degraded in the intestinal fluid. The sustained-release property makes chitosan/β-Lg nanoparticles an attractive candidate for effective delivery of EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du GJ, Zhang Z, Wen XD, Yu C, Calway T, Yuan CS, Wang CZ. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrition 4: 1679–1691 (2012)

    CAS  Google Scholar 

  2. Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 12: 10–20 (2011)

    Article  CAS  Google Scholar 

  3. Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Tech. 17: 272–283 (2006)

    Article  CAS  Google Scholar 

  4. Tang Y, Sun J, Fan H, Zhang X. An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohyd. Polym. 88: 46–53 (2012)

    Article  CAS  Google Scholar 

  5. Liang J, Li F, Fang Y, Yang W, An X, Zhao L, Xin Z, Cao L, Hu Q. Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloid. Surface B 82: 297–301 (2011)

    Article  CAS  Google Scholar 

  6. Liang J, Li F, Fang Y, Yang WJ, An XX, Zhao LY, Xin ZH, Hu QH. Response surface methodology in the optimization of tea polyphenols-loaded chitosan nanoclusters formulations. Eur. Food Res. Technol. 231: 917–924 (2010)

    Article  CAS  Google Scholar 

  7. Hu B, Pan C, Sun Y, Hou Z, Ye H, Zeng X. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. J. Agr. Food Chem. 56: 7451–7458 (2008)

    Article  CAS  Google Scholar 

  8. Chen LY, Subirade M. Chitosan/b-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26: 6041–6053 (2005)

    Article  CAS  Google Scholar 

  9. Teng Z, Luo Y, Wang Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem. 141: 524–532 (2013)

    Article  CAS  Google Scholar 

  10. Hu B, Ting Y, Zeng X, Huang Q. Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohyd. Polym. 89: 362–370 (2012)

    Article  CAS  Google Scholar 

  11. Peram MR, Loveday SM, Ye A, Singh H. In vitro gastric digestion of heatinduced aggregates of b-lactoglobulin. J. Dairy Sci. 96: 63–74 (2013)

    Article  CAS  Google Scholar 

  12. Lee PS, Yim SG, Choi Y, Thi VAH, Ko S. Physiochemical properties and prolonged release behaviours of chitosan-denatured beta-lactoglobulin microcapsules for potential food applications. Food Chem. 134: 992–998 (2012)

    Article  CAS  Google Scholar 

  13. Ha HK, Kim JW, Lee MR, Lee WJ. Formation and characterization of quercetinloaded chitosan oligosaccharide/β-lactoglobulin nanoparticle. Food Res. Int. 52: 82–90 (2013)

    Article  CAS  Google Scholar 

  14. Hu B, Ting YW, Zeng XX, Huang QR. Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (-)-Epigallocatechin-3-gallate. J. Agr. Food Chem. 61: 875–881 (2013)

    Article  CAS  Google Scholar 

  15. Yang CS, Lambert JD, Sang S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch. Toxicol. 83: 11–21 (2009)

    Article  CAS  Google Scholar 

  16. Mounsey JS, O’Kennedy BT, Fenelon MA, Brodkorb A. The effect of heating on beta-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength. Food Hydrocolloid. 22: 65–73 (2008)

    Article  CAS  Google Scholar 

  17. Cho Y, Kim JT, Park HJ. Size-controlled self-aggregated N-acyl chitosan nanoparticles as a vitamin C carrier. Carbohyd. Polym. 88: 1087–1092 (2012)

    Article  CAS  Google Scholar 

  18. Xing JF, Deng LD, Li J, Dong AJ. Amphiphilic poly{[alpha-maleic anhydrideomega-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} graft copolymer nanoparticles as carriers for transdermal drug delivery. Int. J. Nanomedicine 4: 227–232 (2009)

    CAS  Google Scholar 

  19. Vino AB, Ramasamy P, Shanmugam V, Shanmugam A. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pac. J. Trop. Biomed. 2: S334–S341 (2012)

    Article  Google Scholar 

  20. Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I. Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohyd. Polym. 77: 599–606 (2009)

    Article  CAS  Google Scholar 

  21. Shpigelman A, Cohen Y, Livney YD. Thermally-induced beta-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloid. 29: 57–67 (2012)

    Article  CAS  Google Scholar 

  22. Chanasattru W, Jones OG, Decker EA, McClements DJ. Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of beta-lactoglobulin-pectin complexes. Food Hydrocolloid. 23: 2450–2457 (2009)

    Article  CAS  Google Scholar 

  23. Woo HD, Moon TW, Gunasekaran S, Ko S. Determining the gelation temperature of â-lactoglobulin using in situ microscopic imaging. J. Dairy Sci. 96: 5565–5574 (2013)

    Article  CAS  Google Scholar 

  24. Li B, Du WK, Jin JC, Du QZ. Preservation of (-)-Epigallocatechin-3-gallate antioxidant properties loaded in heat treated b-lactoglobulin nanoparticles. J. Agr. Food Chem. 60: 3477–3484 (2012)

    Article  CAS  Google Scholar 

  25. Olsen K, Otte J, Skibsted LH. Steady-state kinetics and thermodynamics of the hydrolysis of beta-lactoglobulin by trypsin. J. Agr. Food Chem. 48: 3086–3089 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghoon Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Yan, H., Yang, HJ. et al. Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate. Food Sci Biotechnol 25, 1583–1590 (2016). https://doi.org/10.1007/s10068-016-0244-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0244-y

Keywords

Navigation