Skip to main content
Log in

The inhibitory effects of roasted black bean (Rhynchosia nulubilis) extracts on RANKL-mediated RAW264.7 cells differentiation

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study compared the inhibitory effects of roasted black bean (Rhynchosia nulubilis, seomoktae, RoS) extracts with raw seomoktae (RaS: control) extract on RANKL-mediated RAW264.7 cell differentiation after the determination of isoflavones content as well as antioxidant and antiinflammatory activities. The RoS extracts (RoS90-20, RoS100-20, RoS110-20, and RoS120-20) had significantly (p<0.05) higher isoflavones (genistein, daidzein, and glycitein) and better antioxidant activity than the RaS extract. Especially, RoS110-20, which was roasted at 110°C for 20 min, has the highest amounts of soy-derived compounds. The RoS110-20 extract significantly reduced LPS-induced nitric oxide (NO) and prostaglandin (PGE2) production compared to the RaS extract. The RoS110-20 extract showed a higher inhibitory effect on the expression of NFATc1 in RANKL-induced RAW 264.7 cells than the RaS extract without any evidence of cytotoxicity under western blotting and tartrateresistant acid phosphatase staining (TRAP). The results of this study suggest that roasting increased the concentration of soy-derived compounds and improved the antioxidant and anti-inflammatory activities of RoS110-20 extract compared with RaS. In addition, the differentiation of RANKL-mediated RAW264.7 cells was effectively inhibited by the RoS110-20 extract due to its enhanced antioxidant and anti-inflammatory activities caused by roasting, confirming its potential for ameliorating bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuit S, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: The rotterdam study. Bone 34: 195–202 (2004)

    Article  CAS  Google Scholar 

  2. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139: 4254–4263 (1998)

    Google Scholar 

  3. Zhang X, Shu XO, Li H, Yang G, Li Q, Gao YT, Zheng W. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch. Intern. Med. 165: 1890–1895 (2005)

    Article  Google Scholar 

  4. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1198–1200 (1958)

    Article  Google Scholar 

  5. Wimalawansa SJ. A four-year randomized controlled trial of hormone replacement and bisphosphonate, alone or in combination, in women with postmenopausal osteoporosis. Am. J. Med. 104: 219–226 (1998)

    Article  CAS  Google Scholar 

  6. Roodman GD. Advances in bone biology: The osteoclast. Endocr. Rev. 17: 308–332 (1996)

    CAS  Google Scholar 

  7. Choi SH. Methanol extract of Ficus carica inhibits osteoclastogenesis in RAW264.7 cell. PhD thesis, Chonbuk National University, Jeonju, Korea (2009)

    Google Scholar 

  8. Arjmandi BH, Alekel L, Hollis BW. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J. Nutr. 126: 161–167 (1996)

    CAS  Google Scholar 

  9. Ananarajah AP, Schwarz EM. Anti-RANKL therapy for inflammatory bone disorders. J. Cell. Biochem. 97: 226–232 (2006)

    Article  Google Scholar 

  10. Um SJ, Kang IS, Cho Y. Study on the role of estrogen receptor-alpha in Yakkong and soybean induced proliferation of MG-63 human osteoblastic cells. J. Nutr. Health 38: 512–520 (2005)

    CAS  Google Scholar 

  11. Kim HG, Kim GW, Oh H, Yoo SY, Kim YO, Oh MS. Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT-Food Sci. Technol. 44: 992–998 (2011)

    Article  CAS  Google Scholar 

  12. Lee JH, Lee BW, Kim B, Kim HT, Lo JM, Baek IY, Seo WT, Kang YM, Cho KM. Changes in phenolic compounds (isoflavones and phenolic acid) and antioxidant properties in high-protein soybean (Glycine max L., cv. Saedanbaek) for different roasting conditions. J. Korean Soc. Appl. Biol. Chem. 56: 605–612 (2013)

    Article  CAS  Google Scholar 

  13. Lee MH, Cho JH, Kim JC, Kim BK. Effect of roasting conditions on the antioxidant activities of tertary buckwheat. Korean J. Food Sci. Technol. 46: 390–393 (2014)

    Article  Google Scholar 

  14. Coward L, Kirk M, Albin N, Barnes S. Analysis of plasma isoflavones by reversed-phase HPLC-multiple reaction ion monitoring-mass spectrometry. Clin. Chim. Acta 247: 121–142 (1996)

    Article  CAS  Google Scholar 

  15. Naik GH, Priyadarsini KI, Naik DB, Gangabhagirathi R, Mohan H. Studies on the aqueous extract of Terminalia chebula as a potent antioxidant and a probable radioprotector. Phytomedicine 20: 530–538 (2004)

    Article  Google Scholar 

  16. Jeong JH, Jung H, Lee SR, Lee HJ, hwang KT, Kim TY. Anti-inflammatory activities of the extracts from black berry fruits and wine. Food Chem. 123: 338–344 (2010)

    Article  CAS  Google Scholar 

  17. Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitricoxide-scavenging properties of ginkgo biloba extract EGb 761. Biochem. Bioph. Res. Co. 201: 748–755 (1994)

    Article  CAS  Google Scholar 

  18. Anderson JJB, Anthony MS, Cline JM, Washburn SA, Garner SC. Health potential of soy isoflavones for menopausal women. Public Health Nutr. 2: 489–504 (1999)

    CAS  Google Scholar 

  19. Setchell JRD. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68: 1333S–1346S (1998)

    CAS  Google Scholar 

  20. Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen ZU. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 90: 735–741 (2005)

    Article  CAS  Google Scholar 

  21. Chien JT, Hsieh HC, Kao TH, Chen BH. Kinetic model for studying the conversion and degradation of isoflavones during heating. Food Chem. 91: 425–434 (2004)

    Article  Google Scholar 

  22. Daniel R. Analysis of soy isoflavone conjugation in vitro in human blood using liquid chromatography mass specrometry. Drug Metab. Dispos. 28: 298–307 (1999)

    Google Scholar 

  23. Sharma P, Gujral HS. Antioxidant activity of barely as affected by extrusion cooking. Food Chem. 131: 1406–1413 (2012)

    Article  CAS  Google Scholar 

  24. Nicoletta P, Roberta R, Min Y, Catherine RE. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2’-azinobis (3-ethylbenzo-thiazoline-6-sultonic acid) radical cation decolorization assay. Method. Enzymol. 299: 379–389 (1999)

    Article  Google Scholar 

  25. Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kiodo K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agr. Food Chem. 53: 4578–4582 (2005)

    Article  CAS  Google Scholar 

  26. Kim MJ, Kim KS. Functional and chemical composition of hwanggumkong, yakong, and huktae. Korean J. Food Cook. Sci. 21: 844–850 (2005)

    Google Scholar 

  27. Lee HJ, Kim NY, Jang MK, Son HJ, Sohn DH, Lee SH, Ryu JH. A sesquiterpene, dehydrocostus lactone, inhibits the expression of inducible nitric oxide sysnthase and TNF-alpha in LPS-activated macrophage. Planta Med. 65: 104–108 (1999)

    Article  CAS  Google Scholar 

  28. Yoo JH, Yang KS. Constituents of pyrus pyrifolia with inhibitory activity on the NO production and the expression of iNOS and COX-2 in macrophages and microglia. Nat. Prod. Sci. 18: 183–189 (2012)

    CAS  Google Scholar 

  29. Sadowska-Krowicka H, Mannick EE, Oliver PD, Sandoval M, Zhang XJ, Eloby- Chiless S, Clark DA, Miller MJS. Genistein and gut inflammation: Role of nitric oxide. P. Soc. Exp. Biol. Med. 217: 351–357 (1998)

    Article  CAS  Google Scholar 

  30. Suda T, Takahashi N, Udagwa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20: 345–357 (1999)

    Article  CAS  Google Scholar 

  31. Nakashima T, Takayanagi H. Osteoimmunology: Cross talk between the immune and bone systems. J. Clin. Immunol. 29: 555–567 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ae-Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, AJ. The inhibitory effects of roasted black bean (Rhynchosia nulubilis) extracts on RANKL-mediated RAW264.7 cells differentiation. Food Sci Biotechnol 25, 839–846 (2016). https://doi.org/10.1007/s10068-016-0139-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0139-y

Keywords

Navigation