Skip to main content
Log in

Sanshool from Zanthoxylum L. induces apoptosis in human hepatocarcinoma HepG2 cells

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Anti-proliferation and apoptosis induction activities of sanshool isolated from Zanthoxylum bungeanum (Rutaceae) in HepG2 cells were investigated. Cell proliferation was analyzed using MTT assays. Apoptotic bodies were observed under scanning electron microscopy. Nucleus staining using dichlorofluorescin diacetate (DAPI) was performed and the mitochondrial membrane potential (ΔΨm) using rhodamine-123 was observed under laser confocal microscopy. Sanshool inhibited cell proliferation in both a dose and time-dependent manner. The anti-proliferation activity was stimulated with apoptosis induction based on an increase in the sub-G1 cell population, DNA fragmentation, and typical apoptotic morphological changes. Sanshool also disrupted ΔΨm and up-regulated mRNA and protein expressions of p53 and caspase-3. Sanshool induced apoptosis via a mitochondrion-dependent pathway. Thus, sanshool is a potential anticancer medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lau WY, Lai ECH. Hepatocellular carcinoma: Current management and recent advances. Hepatob Pancreat Dis. 7: 237–257 (2008)

    Google Scholar 

  2. Schnekenburger M, Dicato M, Diederich M. Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol. Adv. 32: 1123–1132 (2014)

    Article  CAS  Google Scholar 

  3. Shi RZ, Peng HW, Yuan XF, Zhang XL, Zhang YJ, Fan DM, Liu XY, Xiong DS. Downregulation of c-fos by shRNA sensitizes adriamycin-resistant MCF-7/ADR cells to chemotherapeutic agents via P-glycoprotein inhibition and apoptosis augmentation. J. Cell Biochem. 114: 1890–1900 (2013)

    Article  CAS  Google Scholar 

  4. Poornima P, Quency RS, Padma VV. Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food Chem. 136: 659–667 (2013)

    Article  CAS  Google Scholar 

  5. Diao WR, Hu QP, Feng SS, Li WQ, Xu JG. Chemical composition and antibacterial activity of the essential oil from green Huajiao (Zanthoxylum schinifolium) against selected foodborne pathogens. J. Agr. Food Chem. 61: 6044–6049 (2013)

    Article  CAS  Google Scholar 

  6. Tsunozaki M, Lennertz RC, Vilceanu D, Katta S, Stucky CL, Bautista DM. A 'toothache tree' alkylamide inhibits Ad mechanonociceptors to alleviate mechanical pain. J. Physiol-London 591: 3325–3340 (2013)

    Article  CAS  Google Scholar 

  7. Bader M, Stark TD, Dawid C, Losch S, Hofmann T. All-trans-configuration in Zanthoxylum alkylamides swaps the tingling with a numbing sensation and diminishes salivation. J. Agr. Food Chem. 62: 2479–2488 (2014)

    Article  CAS  Google Scholar 

  8. Zhang YJ, Wang DM, Yang LN, Zhou D, Zhang JF. Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PLOS ONE 9: e105,725 (2014)

    Google Scholar 

  9. Zhao ZF, Zhu RX, Zhong K, He Q, Luo AM, Gao H. Characterization and comparison of the pungent components in commercial Zanthoxylum bungeanum oil and Zanthoxylum schinifolium oil. J. Food Sci. 78: C1516–C1522 (2013)

    Article  CAS  Google Scholar 

  10. Klein AH, Sawyer CM, Zanotto KL, Ivanov MA, Cheung S, Carstens MI, Furrer S, Simons CT, Slack JP, Carstens E. A tingling sanshool derivative excites primary sensory neurons and elicits nocifensive behavior in rats. J. Neurophysiol. 105: 1701–1710 (2011)

    Article  CAS  Google Scholar 

  11. Sugai E, Morimitsu Y, Kubota K. Quantitative analysis of sanshool compounds in Japanese pepper (Xanthoxylum piperitum DC.) and their pungent characteristics. Biosci. Biotech. Bioch. 69: 1958–1962 (2005)

    Article  CAS  Google Scholar 

  12. Devkota KP, Wilson J, Henrich CJ, McMahon JB, Reilly KM, Beutler JA. Isobutylhydroxyamides from the pericarp of Nepalese Zanthoxylum armatum inhibit NF1-defective tumor cell line growth. J. Nat. Prod. 76: 59–63 (2013)

    Article  CAS  Google Scholar 

  13. Chu CY, Lee HJ, Chu CY, Yin YF, Tseng TH. Protective effects of leaf extract of Zanthoxylum ailanthoides on oxidation of low-density lipoprotein and accumulation of lipid in differentiated THP-1 cells. Food Chem. Toxicol. 47: 1265–1271 (2009)

    Article  CAS  Google Scholar 

  14. Navarrete A, Hong E. Anthelmintic properties of alpha-sanshool from Zanthoxylum liebmannianum. Planta Med. 62: 250–251 (1996)

    Article  CAS  Google Scholar 

  15. Chou ST, Chan HH, Peng HY, Liou MJ, Wu TS. Isolation of substances with antiproliferative and apoptosis-inducing activities against leukemia cells from the leaves of Zanthoxylum ailanthoides Sieb. Zucc. Phytomedicine 18: 344–348 (2011)

    Article  CAS  Google Scholar 

  16. Sugai E, Morimitsu Y, Iwasaki Y, Morita A, Watanabe T, Kubota K. Pungent qualities of sanshool-related compounds evaluated by a sensory test and activation of rat TRPV1. Biosci. Biotech. Bioch. 69: 1951–1957 (2005)

    Article  CAS  Google Scholar 

  17. Wang CZ, Zhang B, Song WX, Wang AB, Ni M, Luo XJ, Aung HH, Xie JT, Tong R, He TC, Yuan CS. Steamed American ginseng berry: Ginsenoside analyses and anticancer activities. J. Agr. Food Chem. 54: 9936–9942 (2006)

    Article  CAS  Google Scholar 

  18. Lu XY, Liu W, Wu JH, Li MX, Wang JC, Wu JH, Luo C. A polysaccharide fraction of adlay seed (Coix lachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells. Biochem. Bioph. Res. Co. 430: 846–851 (2013)

    Article  CAS  Google Scholar 

  19. Hengartner MO. The biochemistry of apoptosis. Nature 407: 770–776 (2000)

    Article  CAS  Google Scholar 

  20. Lin CC, Kao ST, Chen GW, Ho HC, Chung JG. Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by berberine through the activation of caspase-3. Anticancer Res. 26: 227–242 (2006)

    CAS  Google Scholar 

  21. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73: 39–85 (2004)

    Article  CAS  Google Scholar 

  22. Lemasters JJ, Nieminen AL. Mitochondrial oxygen radical formation during reductive and oxidative stress to intact hepatocytes. Bioscience Rep. 17: 281–291 (1997)

    Article  CAS  Google Scholar 

  23. Wang XZ, Liu SS, Sun Y, Wu JY, Zhou YL, Zhang JH. Beta-cypermethrin impairs reproductive function in male mice by inducing oxidative stress. Theriogenology 72: 599–611 (2009)

    Article  CAS  Google Scholar 

  24. Hirokawa Y, Nheu T, Grimm K, Mautner V, Maeda S, Yoshida M, Komiyama K, Maruta H. Sichuan pepper extracts block the PAK1/cyclin D1 pathway and the growth of NF1-deficient cancer xenograft in mice. Cancer Biol. Ther. 5: 305–309 (2006)

    Article  Google Scholar 

  25. Yang Y, Ikezoe T, Takeuchi T, Adachi Y, Ohtsuki Y, Koeffler HP, Taguchi H. Zanthoxyli Fructus induces growth arrest and apoptosis of LNCaP human prostate cancer cells in vitro and in vivo in association with blockade of the AKT and AR signal pathways. Oncol. Rep. 15: 1581–1590 (2006)

    Google Scholar 

  26. Cao W, Li XQ, Wang X, Fan HT, Zhang XN, Hou Y, Liu SB, Mei QB. A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. Phytomedicine 17: 598–605 (2010)

    Article  CAS  Google Scholar 

  27. Collins AR. The comet assay for DNA damage and repair-Principles, applications, and limitations. Mol. Biotechnol. 26: 249–261 (2004)

    Article  CAS  Google Scholar 

  28. Guha G, Mandal T, Rajkumar V, Kumar RA. Antimycin A-induced mitochondrial apoptotic cascade is mitigated by phenolic constituents of Phyllanthus amarus aqueous extract in Hep3B cells. Food Chem. Toxicol. 48: 3449–3457 (2010)

    Article  CAS  Google Scholar 

  29. Adrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquy M, Cavaillon JM, Pinsky MR, Dhainaut JF, Polla BS. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am. J. Resp. Crit. Care 164: 389–395 (2001)

    Article  CAS  Google Scholar 

  30. Vousden KH, Prives C. Blinded by the light: The growing complexity of p53. Cell 137: 413–431 (2009)

    Article  CAS  Google Scholar 

  31. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Bio. 9: 402–412 (2008)

    Article  CAS  Google Scholar 

  32. Katz S. Beneficial uses of plant pathogens: Anticancer and drug agents derived from plant pathogens. Can. J. Plant Pathol. 24: 10–13 (2002)

    Article  CAS  Google Scholar 

  33. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 21: 485–495 (2000)

    Article  CAS  Google Scholar 

  34. Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17: 7415–7424 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Y., Zhou, M., Lu, H. et al. Sanshool from Zanthoxylum L. induces apoptosis in human hepatocarcinoma HepG2 cells. Food Sci Biotechnol 24, 2169–2175 (2015). https://doi.org/10.1007/s10068-015-0289-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0289-3

Keywords

Navigation