Skip to main content
Log in

Development of chemometric models using infrared spectroscopy (MID-FTIR) for detection of sulfathiazole and oxytetracycline residues in honey

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Chemometric models using mid-infrared (MID-FTIR) spectroscopy were developed for detection and quantification of oxytetracycline and sulfathiazole contamination in honey samples. Low standard error of calibration (SEC) and prediction (SEP) values were achieved using a partial least squares algorithm (SEC= 1.02 and SEP=1.39 for oxytetracycline and SEC=1.24 and SEP=1.79 for sulfathiazole). Chemometric model-predicted concentrations of antibiotics were compared with ELISA results with coefficient of determination R 2=0.8577 for oxytetracycline and R 2=0.8216 for sulfathiazole. Classification of antibiotic contaminated honey samples and uncontaminated samples was carried out using Soft Independent Modeling Class Analogy analysis with a 100% correct classification rate with interclass distances in the range of 6.93–13.3. MID-FTIR chemometric models developed for detection and quantification of oxitetracycline and sulfathiazole in honey samples have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mamani MCV, Reyes FGR, Rath S. Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chem. 117: 545–552 (2009)

    Article  CAS  Google Scholar 

  2. Hwang SA, Lee KB, Cho JY. Degradation of veterinary antibiotic oxytetracycline using electron ionizing energy. J. Korean Soc. Appl. Biol. Chem. 56: 759–762 (2013)

    Article  CAS  Google Scholar 

  3. Bogialli S, Di Corcia A. Recent applications of liquid chromatography-mass spectrometry to residue analysis of antimicrobials in food of animal origin. Anal. Bioanal. Chem. 395: 947–966 (2009)

    Article  CAS  Google Scholar 

  4. Schenck FJ, Callery PS. Chromatographic methods of analysis of antibiotics in milk. J. Chromatogr. A 812: 99–109 (1998)

    Article  CAS  Google Scholar 

  5. Kümmerer K. Antibiotics in the aquatic environment-A review-Part I. Chemosphere 75: 417–434 (2009)

    Article  Google Scholar 

  6. Bonvehí JS, Gutiérrez AL. Residues of antibiotics and sulfonamides in honeys from Basque Country (NE Spain). J. Sci. Food Agr. 89: 63–72 (2009)

    Article  Google Scholar 

  7. Toldrá F, Reig M. Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Sci. Tech. 17: 482–489 (2006)

    Article  Google Scholar 

  8. Heering W, Usleber E, Dietrich RA, Märtlbauer E. Immunochemical screening for antimicrobial drug residues in commercial honey. Analyst 123: 2759–2762 (1998)

    Article  CAS  Google Scholar 

  9. Hammel YA, Mohamed R, Gremaud E, LeBreton MH, Guy PA. Multi-screening approach to monitor and quantify 42 antibiotic residues in honey by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1177: 58–76 (2008)

    Article  CAS  Google Scholar 

  10. Wutz K, Niessner R, Seidel M. Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchim. Acta 173: 1–9 (2011)

    Article  CAS  Google Scholar 

  11. Zai IUM, Rehman K, Hussain A, Shafqatullah. Detection and quantification of antibiotics residues in honey samples by chromatographic techniques. Middle East J. Sci. Res. 14: 683–688 (2013)

    CAS  Google Scholar 

  12. Schindler R, Watkins M, Vonach R, Lendl B, Kellner R, Sara R. Automated multivariate calibration in sequential injection-Fourier transform infrared spectroscopy for sugar analysis. Anal. Chem. 70: 226–231 (1998)

    Article  CAS  Google Scholar 

  13. Ruoff K, Iglesias MT, Luginbühl W, Bosset JO, Bogdanov S, Amado R. Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry. Eur. Food Res. Technol. 223: 22–29 (2006)

    Article  CAS  Google Scholar 

  14. Sivakesava S, Irudayaraj J. A rapid spectroscopic technique for determining honey adulteration with corn syrup. J. Food Sci. 66: 787–791 (2001)

    Article  CAS  Google Scholar 

  15. Draèková M, Navrátilová P, Hadra L, Vorlová L, Hudcová L. Determination residues of penicillin G and cloxacillin in raw cow milk using fourier transform near infrared spectroscopy. Acta Vet. Brno 78: 685–690 (2009)

    Article  Google Scholar 

  16. Meza-Márquez OG, Gallardo-Velázquez T, Dorantes-Álvarez L, Osorio-Revilla G, de la Rosa Arana JL. FT-MIR and Raman spectroscopy coupled to multivariate analysis for the detection of clenbuterol in murine model. Analyst 136: 3355–3365 (2011)

    Article  Google Scholar 

  17. Gómez-De-Anda F, Dorantes-Álvarez L, Gallardo-Velázquez T, Osorio-Revilla G, Calderón-Domínguez G, Martínez Labat P, de-la-Rosa-Arana JL. Determination of Trichinellas piralis in pig muscles using Mid-Fourier Transform Infrared Spectroscopy (MID-FTIR) with Attenuated Total Reflectance (ATR) and Soft Independent Modeling of Class Analogy (SIMCA). Meat Sci. 91: 240–246 (2012)

    Article  Google Scholar 

  18. Casale M, Oliveri P, Casolino C, Sinelli N, Zunin P, Armanino C, Lanteri S. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Anal. Chim. Acta 712: 56–63 (2012)

    Article  CAS  Google Scholar 

  19. Meza MO, Gallardo VT, Osorio RG. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Sci. 86: 511–519 (2010)

    Article  Google Scholar 

  20. Quiñones-Islas N, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velázquez T. Detection of adulterants in avocado oil by Mid-FTIR spectroscopy and multivariate analysis. Food Res. Int. 51: 148–154 (2013)

    Article  Google Scholar 

  21. Tul'chinsky VM, Zurabyan SE, Asankozhoev KA, Kogan GA, Khorlin AY. Study of the infrared spectra of oligosaccharides in the region 1,000-40 cm-1. Carbohyd. Res. 51: 1–8 (1976)

    Article  Google Scholar 

  22. Hineno M. Infrared spectra and normal vibration of ß-Dglucopyranose. Carbohyd. Res. 56: 219–227 (1977)

    Article  CAS  Google Scholar 

  23. Chen M, Irudayaraj J. Sampling technique for cheese analysis by FTIR spectroscopy. J. Food Sci. 63: 96–99 (1998)

    Article  CAS  Google Scholar 

  24. Silverstein RM, Webster FX, Kiemle D. Spectrometric Identification of Organic Compounds. 6th ed. Wiley and Sons Ltd., New York, NY, USA. pp. 122–124 (1998)

    Google Scholar 

  25. Lai YW, Kemsley EK, Wilson RH. Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. J. Agr. Food Chem. 42: 1154–1159 (1994)

    Article  CAS  Google Scholar 

  26. Sivakesava S, Irudayaraj J. Rapid determination of tetracycline in milk by FT-MIR and FT-NIR spectroscopy. J. Dairy Sci. 85: 487–493 (2002)

    Article  CAS  Google Scholar 

  27. Osborne BG, Hindle PH. Practical NIR Spectroscopy with Application in Food and Beverage Analysis. Longman Scientific & Technical, Harlow, UK. pp. 185–196 (1993)

    Google Scholar 

  28. Alomar D, Fuchslocher R. Fundamentals of near infrared reflectance spectroscopy as a method of forage analysis. Agro Sur 26: 88–104 (1998)

    Article  Google Scholar 

  29. Dupuy N, Duponchel L, Amram B, Huvenne JP, Legrand P. Quantitative analysis of latex in paper coatings by ATR-FTIR spectroscopy. J. Chemometr. 8: 333–347 (1994)

    Article  CAS  Google Scholar 

  30. Beebe KR, Pell RJ, Seascholtz MB. Chemometrics: A Practical Guide. John Wiley and Sons, Hoboken, NJ, USA. pp. 132–133 (1998)

    Google Scholar 

  31. Rohman A, Che Man YB. The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and quantification of adulteration in virgin coconut oil. Food Chem. 129: 583–588 (2011)

    Article  CAS  Google Scholar 

  32. Stubbings G, Tarbin J, Cooper A, Sharman M, Bigwood T, Robb P. A multi-residue cation-exchange clean up procedure for basic drugs in produce of animal origin. Anal. Chim. Acta 547: 262–268 (2005)

    Article  CAS  Google Scholar 

  33. Van Peteguem C, Daeselaire E, Heeremans A. Residues of growth promoters. pp. 965–985. In: Food Analysis by HPLC. 2nd ed. Nollet LML (ed). Marcel Dekker, New York, NY, USA (2000)

    Google Scholar 

  34. He J, Rodríguez-Saona LE, Giusti MM. Mid infrared spectroscopy for juice authentication-rapid differentiation of commercial juices. J. Agr. Food Chem. 55: 4443–4452 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzayhrí Gallardo Velázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, K.U., Velázquez, T.G., Revilla, G.O. et al. Development of chemometric models using infrared spectroscopy (MID-FTIR) for detection of sulfathiazole and oxytetracycline residues in honey. Food Sci Biotechnol 24, 1219–1226 (2015). https://doi.org/10.1007/s10068-015-0156-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0156-2

Keywords

Navigation