Skip to main content
Log in

Juniperus chinensis and the functional compounds, cedrol and widdrol, ameliorate α-melanocyte stimulating hormone-induced melanin formation in B16F10 cells

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Anti-melanogenic activities of Juniperus chinensis methanol extracts (JCM) and isolation of functional compounds were investigated. JCM possessed potent anti-oxidative and tyrosinase inhibitory activities. α-Melanocyte stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity were inhibited by JCM in B16F10 cells. JCM also possessed potent scavenging activities against hydrogen peroxide induced reactive oxygen species (ROS). The dichloromethane (CH2Cl2) solvent fraction only exhibited an anti-melanogenic activity with a potent ROS scavenging potential. The main compounds in the CH2Cl2 fraction were cedrol (CR) and widdrol (WR), which inhibited melanogenesis both individually and synergistically. As the results, J. chinensis possesses potent anti-oxidative and anti-melanogenic activities due to active compounds, CR and WR. J. chinensis, CR, and WR provide promising new strategies for anti-oxidative and depigmenting resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agar N, Young AR. Melanogenesis: A photoprotective response to DNA damage? Mutat. Res. 571: 121–132 (2005)

    Article  CAS  Google Scholar 

  2. Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches. Int. J. Cosmetic Sci. 33: 210–221 (2011)

    Article  CAS  Google Scholar 

  3. Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol. Rev. 30: 91–126 (1950)

    CAS  Google Scholar 

  4. Eves PC, MacNeil S, Haycock JW. α-Melanocyte stimulating hormone, inflammation, and human melanoma. Peptides 27: 444–452 (2006)

    Article  CAS  Google Scholar 

  5. Lee TH, Lee MS, Lu MY. Effects of α-MSH on melanogenesis and tyrosinase of B-16 melanoma. Endocrinology 91: 1180–1188 (1972)

    Article  CAS  Google Scholar 

  6. Passeron T, Namiki T, Passeron HJ, Le Pape E, Hearing VJ. Forskolin protects keratinocytes from UVB-induced apoptosis and increases DNA repair independent of its effects on melanogenesis. J. Invest. Dermatol. 129: 162–166 (2009)

    Article  CAS  Google Scholar 

  7. Lee J, Jung E, Park J, Jung K, Park E, Kim J, Hong S, Park S, Lee S, Park D. Glycyrrhizin induces melanogenesis by elevating a cAMP level in B16 melanoma cells. J. Invest. Dermatol. 124: 405–411 (2005)

    Article  CAS  Google Scholar 

  8. Jin ML, Park SY, Kim YH, Park G, Son HJ, Lee SJ. Suppression of α-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int. J. Mol. Med. 29: 119–124 (2012)

    CAS  Google Scholar 

  9. Ravnbak MH, Philipsen PA, Wiegell SR, Wulf HC. Skin pigmentation kinetics after UVB exposure. Acta Derm.-Venereol. 88: 223–228 (2008)

    Google Scholar 

  10. Lim JP, Song YC, Kim JW, Ku CH, Eun JS, Leem KH, Kim DK. Free radical scavengers from the heartwood of Juniperus chinensis. Arch. Pharm. Res. 25: 449–452 (2002)

    Article  CAS  Google Scholar 

  11. Ali AM, Mackeen MM, Intan-Safinar I, Hamid M, Lajis NH, el-Sharkawy SH, Murakoshi M. Antitumour-promoting and antitumour activities of the crude extract from the leaves of Juniperus chinensis. J. Ethnopharmacol. 53: 165–169 (1996)

    Article  CAS  Google Scholar 

  12. Carroll JF, Tabanca N, Kramer M, Elejalde NM, Wedge DE, Bernier UR, Coy M, Becnel JJ, Demirci B, Baser KH, Zhang J, Zhang S. Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J. Vector Ecol. 36: 258–268 (2011)

    Article  Google Scholar 

  13. Lee CH, Park JM, Song HY, Jeong EY, Lee HS. Acaricidal activities of major constituents of essential oil of Juniperus chinensis leaves against house dust and stored food mites. J. Food Protect. 72: 1686–1691 (2009)

    CAS  Google Scholar 

  14. Ju JB, Kim JS, Choi CW, Lee HK, Oh TK, Kim SC. Comparison between ethanolic and aqueous extracts from Chinese juniper berries for hypoglycaemic and hypolipidemic effects in alloxan-induced diabetic rats. J. Ethnopharmacol. 115: 110–115 (2008)

    Article  Google Scholar 

  15. Kim SJ, Jung JY, Kim HW, Park T. Anti-obesity effects of Juniperus chinensis extract are associated with increased AMP-activated protein kinase expression and phosphorylation in the visceral adipose tissue of rats. Biol. Pharm. Bull. 31: 1415–1421 (2008)

    Article  CAS  Google Scholar 

  16. Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Tech. Mys. 48: 412–422 (2011)

    Article  CAS  Google Scholar 

  17. Piao LZ, Park HR, Park YK, Lee SK, Park JH, Park MK. Mushroom tyrosinase inhibition activity of some chromones. Chem. Pharm. Bull. 50: 309–311 (2002)

    Article  CAS  Google Scholar 

  18. Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J. Microbiol. Meth. 73: 211–215 (2008)

    Article  CAS  Google Scholar 

  19. Chung KW, Park YJ, Choi YJ, Park MH, Ha YM, Uehara Y, Yoon JH, Chun P, Moon HR, Chung HY. Evaluation of in vitro and in vivo anti-melanogenic activity of a newly synthesized strong tyrosinase inhibitor (E)-3-(2,4 dihydroxybenzylidene) pyrrolidine-2,5-dione (3-DBP). Biochim. Biophys. Acta 1820: 962–969 (2012)

    Article  CAS  Google Scholar 

  20. Magalhaes LM, Segundo MA, Reis S, Lima JL. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 613: 1–19 (2008)

    Article  CAS  Google Scholar 

  21. Singh P, Singh IN, Mondal SC, Singh L, Garg VK. Platelet-activating factor (PAF)-antagonists of natural origin. Fitoterapia 84: 180–201 (2013)

    Article  CAS  Google Scholar 

  22. Cai L, Ye H, Li X, Lin Y, Yu F, Chen J, Li H, Liu X. Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int. J. Oncol. 42: 1452–1458 (2013)

    CAS  Google Scholar 

  23. Su YC, Hsu KP, Wang EI, Ho CL. Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat. Prod. Commun. 7: 1245–1247 (2012)

    CAS  Google Scholar 

  24. Yada Y, Sadachi H, Nagashima Y, Suzuki T. Overseas survey of the effect of cedrol on the autonomic nervous system in three countries. J. Physiol. Anthropol. 26: 349–354 (2007)

    Article  Google Scholar 

  25. Jin MH, Park SG, Hwang YL, Lee MH, Jeong NJ, Roh SS, Lee Y, Kim CD, Lee JH. Cedrol enhances extracellular matrix production in dermal fibroblasts in a MAPK-dependent manner. Ann. Dermatol. 24: 16–21 (2012)

    Article  CAS  Google Scholar 

  26. Yun HJ, Kim JH, Jeong HY, Ji HH, Nam SW, Lee EW, Kim BW, Kwon HJ. Widdrol blocks 3T3-L1 preadipocytes growth and differentiation due to inhibition of mitotic clonal expansion. J. Microbiol. Biotechn. 22: 806–813 (2012)

    Article  CAS  Google Scholar 

  27. Kang MR, Park SK, Lee CW, Cho IJ, Jo YN, Yang JW, Kim JA, Yun J, Lee KH, Kwon HJ, Kim BW, Lee K, Kang JS, Kim HM. Widdrol induces apoptosis via activation of AMP-activated protein kinase in colon cancer cells. Oncol. Rep. 27: 1407–1412 (2012)

    CAS  Google Scholar 

  28. Yun HJ, Hyun SK, Park JH, Kim BW, Kwon HJ. Widdrol activates DNA damage checkpoint through the signaling Chk2-p53-Cdc25Ap21-MCM4 pathway in HT29 cells. Mol. Cell. Biochem. 363: 281–289 (2012)

    Article  CAS  Google Scholar 

  29. Kwon HJ, Hong YK, Park C, Choi YH, Yun HJ, Lee EW, Kim BW. Widdrol induces cell cycle arrest, associated with MCM down-regulation, in human colon adenocarcinoma cells. Cancer Lett. 290: 96–103 (2010)

    Article  CAS  Google Scholar 

  30. Nuñez YO, Salabarria IS, Collado IG, Hernandez-Galan R. The antifungal activity of widdrol and its biotransformation by Colletotrichum gloeosporioides (penz.) Penz. & Sacc. and Botrytis cinerea Pers.: Fr. J. Agr. Food Chem. 54: 7517–7521 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ju Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, KS., Lee, J.Y., Hyun, S.K. et al. Juniperus chinensis and the functional compounds, cedrol and widdrol, ameliorate α-melanocyte stimulating hormone-induced melanin formation in B16F10 cells. Food Sci Biotechnol 24, 611–618 (2015). https://doi.org/10.1007/s10068-015-0080-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0080-5

Keywords

Navigation