Skip to main content
Log in

Fermentation of Platycodi radix and bioconversion of platycosides using co-cultures of Saccharomyces cerevisiae KCTC 7928 and Aspergillus awamori FMB S900

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Preparation of Platycodi radix (PR) wine and assessment of biotransformation patterns of PR platycosides using co-cultures of Saccharomyces cerevisiae KCTC 7928 with Aspergillus awamori FMB S900 were performed. The basal fermentation temperature was 15°C and a high sucrose concentration (30% and above) was used to increase the level of ethanol production. Fermentation of PR in co-cultures of S. cerevisiae with A. awamori was compared to single culture fermentations using S. cerevisiae at concentrations of 30–50% (w/w) sucrose with analysis at an interval of 15 days during fermentation. The 3 major saponins (platycoside E, platycodin D3, and platycodin D) were converted into 16-oxo-PD during co-cultures of S. cerevisiae with A. awamori with production of up to 12.5% ethanol (with an initial sugar concentration of 40%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ha IJ, Ha YW, Kang MS, Lee JS, Park DH, Kim YS. Enzymatic transformation of platycosides and one-step separation of platycodin D by high-speed countercurrent chromatography. J. Sep. Sci. 33: 1916–1922 (2010)

    Article  CAS  Google Scholar 

  2. Takagi K, Lee EB. Pharmacological studies on Platycodon grandiflorum A. DC. 3. Activities of crude platycodin on respiratory and circulatory systems and its other pharmacological activities. Yakugaku Zasshi. 92: 969–973 (1972)

    CAS  Google Scholar 

  3. Kim KS, Ezaki O, Ikemoto S, Itakura H. Effects of Platycodon grandiflorum feeding on serum and liver lipid concentrations in rats with diet-induced hyperlipidemia. J. Nutr. Sci. Vitaminol. 41: 485–491 (1995)

    Article  CAS  Google Scholar 

  4. Kwon DY, Kim YS, Hong SM, Park SM. Long-term consumption of saponins derived from Platycodi radix (22 years old) enhances hepatic insulin sensitivity and glucose-stimulated insulin secretion in 90 % pancreatectomized diabetic rats fed a high-fat diet. Brit. J. Nutr. 101: 358–366 (2008)

    Article  Google Scholar 

  5. Li W, Zhang W, Xiang L, Wang Z, Zheng YN, Wang YP, Zhang J, Chen L. Platycoside N: A new oleanane-type triterpenoid saponin from the roots of Platycodon grandiflorum. Molecules 15: 8702–8708 (2010)

    Article  CAS  Google Scholar 

  6. Park SJ, Lee HA, Kim JW, Lee BS, Kim EJ. Platycodon grandiflorus alleviates DNCB-induced atopy-like dermatitis in NC/Nga mice. Indian J. Pharmacol. 44: 469–474 (2012)

    Article  CAS  Google Scholar 

  7. Lee JY, Hwang WI, Lim ST. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol. 93: 409–415 (2004)

    Article  Google Scholar 

  8. Ahn KS, Noh EJ, Zhao HL, Jung SH, Kang SS, Kim YS. Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-nB activation in RAW 264.7 cells. Life Sci. 76: 2315–2328 (2004)

    Article  Google Scholar 

  9. Rao AV, Gurfinkel DM. The bioactivity of saponins: Triterpenoid and steroidal glycosides. Drug Metabol. Drug Interact. 17: 211–235 (2000)

    Article  CAS  Google Scholar 

  10. Na YC, Ha YW, Kim YS, Kim KJ. Structural analysis of platycosides in PR by liquid chromatography/electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 1189: 467–475 (2008)

    Article  CAS  Google Scholar 

  11. Li W, Sun YS, Wang Z, Zheng YN. Isolation and purification of saponins from Platycodon grandiflorum by semi-preparative high performance liquid chromatography and LC/ESI-MS. J. Liq. Chromatogr. R. T. 35: 547–557 (2012)

    Article  CAS  Google Scholar 

  12. Ha YW, Na YC, Seo JJ, Kim SN, Linhardt RJ, Kim YS. Qualitative and quantitative determination of ten major saponins in PR by high performance liquid chromatography with evaporative light scattering detection and mass spectrometry. J. Chromatogr. A 1135: 27–35 (2006)

    Article  CAS  Google Scholar 

  13. Li W, Xiang L, Zhang J, Zheng YN, Han LK, Saito M. A new triterpenoid saponin from the roots of Platycodon grandiflorum. Chinese Chem. Lett. 18: 306–308 (2007)

    Article  CAS  Google Scholar 

  14. Hawksworth G, Drasar BS, Hili MJ. Intestinal bacteria and the hydrolysis of glycosidic bonds. J. Med. Microbiol. 4: 451–459 (1971)

    Article  CAS  Google Scholar 

  15. Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83: 1–11 (2002)

    Article  CAS  Google Scholar 

  16. Loughlin WA. Biotransformations in organic synthesis. Bioresource Technol. 74: 49–62 (2000)

    Article  CAS  Google Scholar 

  17. Guang TC, Min Y, Yan S, Zhi QL, Jin QZ, Hui LH, Li JW, De AG. Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl. Microbiol. Biot. 77: 1345–1350 (2008)

    Article  Google Scholar 

  18. Demirci A, Pometto AL. Enhanced organically bound chromium yeast production. J. Agr. Food Chem. 48: 531–536 (2000)

    Article  CAS  Google Scholar 

  19. David CS, Thomas M. Woodxylanase product ion by Aspergillus awamori development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and p-xylosidase while maintaining low protease production. Biotechnol. Bioeng. 38: 883–890 (1991)

    Article  Google Scholar 

  20. Asher MJ, Cowe IA, Thomas CE. Rapid method of counting spores of fungal pathogens by infra-red reflectance analysis. J. Plant Pathol. 31: 363–371 (1982)

    Article  Google Scholar 

  21. Han LK, Xu BJ, Kimura Y, Zheng YN, Okuda H. PR affects lipid metabolism in mice with high fat diet-induced obesity. J. Nutr. 130: 2760–2764 (2000)

    CAS  Google Scholar 

  22. Wu JJ, Ma YK, Zhang FF, Chen FS. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiol. 30: 289–297 (2012)

    Article  CAS  Google Scholar 

  23. National Tax Service Technical Service Institute, Korea. Korea National Tax Service Liquor Analysis Regulation. National Tax Service Technical Service Institute, Seoul, Korea. pp. 62–66 (2008)

    Google Scholar 

  24. Turker N, Coskuner Y, Ekiz HI, Aksay S, Karababa E. The effects of fermentation on the thermostability of the yellow-orange pigments extracted from cactus pear (Opuntia ficus-indica). Eur. Food Res. Technol. 212: 213–216 (2001)

    Article  CAS  Google Scholar 

  25. Montgomery R. Further studies of the phenol-sulfuric acid reagent for carbohydrates. Biochim. Biophys. Acta 48: 591–593 (1961)

    Article  CAS  Google Scholar 

  26. Friedrich J, Cimerman A, Perdih A. Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Appl. Microbiol. Biot. 26: 299–303 (1987)

    Article  CAS  Google Scholar 

  27. Park YS, Ha DM. Isolation and identification of the lactic acid bacteria from nuruk. J. Korean Soc. Appl. Bi. 38: 95–99 (1995)

    Google Scholar 

  28. Park RD. Preparation of Korean Traditional Wine. Osang Press, Seoul, Korea. pp. 30–67 (2002)

    Google Scholar 

  29. Min YK, Jeong HS. Manufacture of some Korean medicinal herb liquors by soaking. Korean J. Food Sci. Technol. 27: 210–215 (1995)

    Google Scholar 

  30. Kim JH, Lee SH, Kim NM, Choi SY, Yoo JY, Lee JS. Manufacture and physiological functionality of Korean traditional liquor by using dandelion (Taraxecum platycarpum). Korean J. Appl. Microbiol. Biotechnol. 28: 367–371 (2000)

    CAS  Google Scholar 

  31. Lee DH, Kim JH, Kim NM, Choi JS, Lee JS. Physiological functionality of Chinese quince wine and liquors. Korean J. Biotechnol. Bioeng. 17: 266–270 (2002)

    Google Scholar 

  32. Holcberg IB, Margalith P. Alcoholic fermentation by immobilized yeast at high sugar concentrations. Eur. J. Appl. Microbiol. 13: 133–140 (1981)

    Article  CAS  Google Scholar 

  33. Koppensteiner G, Windisch S. Osmotischer wert bei wachsturn und garung von hefen. Arch. Microbiol. 80: 300–314 (1971)

    CAS  Google Scholar 

  34. Torija MJ, Beltran G, Novo M, Poblet M, Guillamón JM, Mas A. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol. 85: 127–136 (2003)

    Article  CAS  Google Scholar 

  35. Yoon YJ, Kim NY, Rhee YK, Han MJ. Quality characteristics and biological activities of traditionally fermented ginseng wine. Food Sci. Biotechnol. 16: 198–204 (2007)

    CAS  Google Scholar 

  36. Park WM, Park HG, Rhee SJ, Lee CH, Yoon KE. Suitability of domestic grape, cultivar Campbell’s early for production of red wine. Korean J. Food Sci. Technol. 34: 590–596 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geun Eog Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, Y.l., Ahn, H.J. & Ji, G.E. Fermentation of Platycodi radix and bioconversion of platycosides using co-cultures of Saccharomyces cerevisiae KCTC 7928 and Aspergillus awamori FMB S900. Food Sci Biotechnol 24, 183–189 (2015). https://doi.org/10.1007/s10068-015-0025-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0025-z

Keywords

Navigation