Skip to main content
Log in

Efficient expression of myo-inositol oxygenase in Escherichia coli and application for conversion of myo-inositol to glucuronic acid

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Glucuronic acid is an important biochemical with wide applications in the food and medical industries. The myo-inositol oxygenase (MIOX) gene was synthesized and expressed in Escherichia coli BL 21(DE3). After optimization of induction conditions and the culture temperature, the highest MIOX activity (45.46 kU/L) was achieved when 0.1 mM isopropyl-thio-β-d-galactoside (IPTG) was added to cell cultures with an OD600 value 1.0 followed by induction at 26°C for 8 hours. The purified MIOX enzyme exerted characteristics similar to the native form. Conversion of myo-inositol to glucuronic acid was performed using whole cells in a pH 8.5 buffer system. Whole cells harboring myo-inositol oxygenase were used as a biocatalyst to produce 2.13 g/L of glucuronic acid with a conversion rate of 99%. A promising novel process for glucuronic acid production from abundant agricultural byproducts is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolees H. Ausblicke in eine zukünftige Säuglingsernährung. Monatsschr. Kinderheilkd. 151: 89–96 (2003)

    Article  Google Scholar 

  2. Mikko HMD, Pirkko AMA, Kalle HMD. Inositol supplementation in respiratory distress syndrome relationship between serum concentration, renal excretion, and lung efuent phospholipids. J. Pediatr. 110: 604–610 (1987)

    Article  Google Scholar 

  3. Jiang WD, Wu P, Kuang SY. Myo-inositol prevents copper-induced oxidative damage and charges in antioxidant capacity in various organs and the enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). Aquat. Toxicol. 105: 543–551 (2011)

    Article  CAS  Google Scholar 

  4. Brown PM, Caradoc-Davies TT, Dickson JMJ, Cooper GJS, Loomes KM, Baker EN. Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism. P. Natl. Acad. Sci. USA 103: 15032–15037 (2006)

    Article  CAS  Google Scholar 

  5. Moon T S, Dueber JE, Shiue E, Kristala LJP. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12: 298–305 (2010)

    Article  CAS  Google Scholar 

  6. Yuan H, Sun YB, Yan ZG, Wu GW, Wu YX. Research and development of D-glucuronolactone. Chem. Bioeng. 23: 53–54 (2006)

    CAS  Google Scholar 

  7. Yuan H, Sun YB, Yan ZG, Du ZP, Wu YX. Improvement on the esterification and crystallization of d-glucuronolactone. Appl. Chem. Ind. 36: 334–336 (2007)

    CAS  Google Scholar 

  8. Charalampous FC, Lyras C. Biochemical studies on inositol. IV. Conversion of inositol to glucuronic acid by rat kidney extracts. J. Biol. Chem. 228: 1–13 (1957)

    CAS  Google Scholar 

  9. Arner RJ, Prabhu KS, Thompson JT, Reddy CC. Cloning, expression, and characterization of myo-inositol oxygenase from hog kidney. FASEB J. 15: 535–538 (2001)

    Article  Google Scholar 

  10. Moskala R, Reddy CC, Minard RD, Hamilton GA. An oxygen-18 tracer investigation of the mechanism of myo-inositol oxygenase, Biochem. Biophys. Res. Commun. 99: 107–113 (1981)

    Article  CAS  Google Scholar 

  11. Hirao H, Morokuma K. Insights into the (superoxo)Fe(III)Fe(III) intermediate and reaction mechanism of myo-inositol oxygenase: DFT and ONIOM(DFT:MM) study. J. Am. Chem. Soc. 131: 17206–17214 (2009)

    Article  CAS  Google Scholar 

  12. Lorence A, Chevone BI, Mendes P, Nessler CL. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134: 1200–1205 (2004)

    Article  CAS  Google Scholar 

  13. Yang Q, Dixit B, Wada J, Tian Y, Wallner EI, Srivastva SK, Kanwar YS. Identification of a renal-specific oxido-reductase in newborn diabetic mice. P. Natl. Acad. Sci. USA 97: 9896–9901 (2000)

    Article  CAS  Google Scholar 

  14. Arner RJ, Prabhu KS, Thompson JT, Hildenbrandt GR, Liken AD, Reddy CC. Myo-Inositol oxygenase: Molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and Dchiro-inositol. Biochem. J. 60: 313–320 (2001)

    Article  Google Scholar 

  15. Arner RJ, Prabhu KS, Reddy CC. Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney. Biochem. Biophys. Res. Commun. 324: 1386–1392 (2004)

    Article  CAS  Google Scholar 

  16. Reddy CC, Swan JS, Hamilton GA. Myo-inositol oxygenase from hog kidney I. J. Biol. Chem. 256: 8510–8518 (1981)

    CAS  Google Scholar 

  17. Koller F, Hoffmann-Ostenhof O. Myo-inositol oxygenase from rat kidneys I: Purification by affinity chromatography; physical and catalytic properties. Hoppe-Seyler’s Z Physiol. Chem. 360: 507–513 (1979)

    Article  CAS  Google Scholar 

  18. Koller F, Koller E. Myo-inositol oxygenase from rat kidneys. Eur. J. Biochem. 193: 421–427 (1990)

    Article  CAS  Google Scholar 

  19. Kanter U, Becker M, Friauf E, Tenhaken R. Purication, characterization, and functional cloning of inositol oxygenase from Cryptococcus. Yeast 20: 1317–1329 (2003)

    Article  CAS  Google Scholar 

  20. Moon TS, Yoon SH, Amanda ML, Joseph DRM, Kristala LJP. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl. Emviron. Mirobiol. 75: 589–595 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhinan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Wei, P., Huang, L. et al. Efficient expression of myo-inositol oxygenase in Escherichia coli and application for conversion of myo-inositol to glucuronic acid. Food Sci Biotechnol 23, 445–450 (2014). https://doi.org/10.1007/s10068-014-0061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0061-0

Keywords

Navigation