Skip to main content
Log in

Gamma-aminobutyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (Oryza sativa L.): Effect of rice cultivars

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The γ-aminobutyric acid (GABA) and glutamic acid (Glu) contents, and the glutamate decarboxylase (GAD) activity in brown rice (BR) and germinated BR (GBR) of the 5 Thai rice cultivars KDML105, PT1, CN1, SP1, and PL2 were investigated. BR was soaked at 35°C for 12 h and then germinated for 24 h to produce GBR. Amounts of GABA and Glu, and the GAD activity in samples were determined. The GABA content and GAD activity in GBR samples of all cultivars were increased 7–50× and 10–100× over levels in BR. The GABA content in BR had no effect on GABA accumulation in GBR. There was no trend in changes in the Glu content for different cultivars after soaking and germination. Variation in the GABA amount in GBR was due to both the GAD activity and the amount of Glu. These two parameters affected accumulation of GABA in all cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohtsubo K, Suzuki K, Yasui Y, Kasumi T. Bio-functional components in the processed pre-GBR by a twin-screw extruder. J. Food Compos. Anal. 18: 303–316 (2005)

    Article  CAS  Google Scholar 

  2. Luangmalawat P, Prachayawarakorn S, Nathakaranakule A, Soponronnarit S. Effect of temperature on drying characteristics and quality of cooked rice. LWT-Food Sci. Technol. 41: 716–723 (2008)

    Article  CAS  Google Scholar 

  3. Jaisut D, Prachayawarakorn S, Varanyanond W, Tungtrakul P, Soponronnarit S. Effect of drying temperature and tempering time on starch digestibility of brown fragrant rice. J. Food Eng. 86: 251–258 (2008)

    Article  Google Scholar 

  4. Bau HM, Villaume C, Nicolas JP, Mejean L. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agr. 73: 1–9 (1997)

    Article  CAS  Google Scholar 

  5. Yang F, Basu TK, Ooraikul B. Studies on germination and antioxidant contents of wheat grain. Int. J. Food Sci. Nutr. 52: 319–330 (2001)

    Article  CAS  Google Scholar 

  6. Bamforth CW, Barclay AHP. Malting technology and the uses of malt. pp. 297–354. In: Barley Chemistry and Technology. MacGregor AW, Bhatty RS (eds). American Association of Cereal Chemists, Saint Paul, MN, USA (1993)

    Google Scholar 

  7. Lee YR, Kim JY, Woo KS, Hwang IG, Kim KH, Kim KJ, Kim JH. Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci. Biotechnol. 16: 1006–1010 (2007)

    CAS  Google Scholar 

  8. Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4: 446–452 (1999)

    Article  Google Scholar 

  9. Komatsuzaki N, Tsukahara K, Toyoshima H, Suzuki T, Shimizu N, Kimura T. Effect of soaking and gaseous treatment on GABA content in GBR. J. Food Eng. 78: 556–560 (2007)

    Article  CAS  Google Scholar 

  10. Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H. Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. Biofactors 26: 201–208 (2006)

    Article  CAS  Google Scholar 

  11. Oh SH, Soh JR, Cha YS. GBR extract shows a nutraceutical effect in the recovery of chronic alcohol related symptoms. J. Med. Food 6: 115–121 (2003)

    Article  CAS  Google Scholar 

  12. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y. Effect of a gamma-aminobutyric acid enriched dairy product on blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Brit. J. Nutr. 92: 411–417 (2004)

    Article  CAS  Google Scholar 

  13. Kinnersley AM, Turano FJ. γ-Aminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 19: 479–509 (2000)

    Article  CAS  Google Scholar 

  14. Shu XL, Thomas F, Shu QY, Engel KH. Metabolite profiling of germinating rice seeds. J. Agr. Food Chem. 56: 11612–11620 (2008)

    Article  CAS  Google Scholar 

  15. Chung HJ, Jang SH, Cho HY, Lim ST. Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. LWT-Food Sci. Technol. 42: 1712–1716 (2009)

    Article  CAS  Google Scholar 

  16. Bai Q, Chai M, Gu Z, Cao X, Li Y, Liu K. Effects of components in culture medium on glutamate decarboxylase activity and γ-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chem. 116: 152–157 (2009)

    Article  CAS  Google Scholar 

  17. Lin, LY, Peng CC, Yang YL, Peng RY. Optimization of bioactive compounds in buckwheat sprouts and their effect on blood cholesterol in hamsters. J. Agr. Food Chem. 56: 1216–1223 (2008)

    Article  CAS  Google Scholar 

  18. Miura D, Ito Y, Mizukuchi A, Kise M, Aoto H, Yagasaki K. Hypercholesterolemic action of pre-GBR in hepatoma-bearing rats. Life Sci. 79: 259–264 (2006)

    Article  CAS  Google Scholar 

  19. Watchararparpaiboon W, Laohakunjit N, Kerdchoechuen O. An improved process for high quality and nutrition of BR production. Food Sci. Technol. Int. 16: 147–158 (2010)

    Article  CAS  Google Scholar 

  20. Oh SH, Choi WG. Changes in the levels of gamma-aminobutyric acid and GAD in developing soybean seedlings. J. Plant Res. 114: 309–313 (2001)

    Article  CAS  Google Scholar 

  21. Bai Q, Fan G, Gu Z, Cao X, Gu F. Effects of culture conditions on γ-aminobutyric acid accumulation during germination of foxtail millet (Setaria italic L.). Eur. Food Res. Technol. 228: 169–175 (2008)

    Article  CAS  Google Scholar 

  22. Zhang H, Yao H, Chen F, Wang X. Purification and characterization of GAD from rice germ. Food Chem. 101: 1670–1676 (2007)

    Article  CAS  Google Scholar 

  23. Roohinejad S, Mirhosseini H, Saari N, Mustafa S, Alias I, Meor Hussin AS, Hamid A, Manap MY. Evaluation of GABA, crude protein and amino acid composition from different varieties of Malaysian’s brown rice. Aust. J. Crop Sci. 3(4): 184–190 (2009)

    CAS  Google Scholar 

  24. Saikusa T, Horino T, Mori Y. Accumulation of gamma-aminobutyric acid (GABA) in rice germ during water soaking. Biosci. Biotech. Bioch. 58: 2291–2292 (1994)

    Article  CAS  Google Scholar 

  25. Kamara JS, Konishi S, Sasanuma T, Abe T. Variation in free amino acid profile among some rice (Oryza sativa L.) cultivars. Breed Sci. 60: 46–54 (2010)

    Article  CAS  Google Scholar 

  26. Nagaoka H. Treatment of germinated wheat to increase levels of GABA and IP6 catalyzed by endogenous enzymes. Biotechnol. Progr. 21: 405–410 (2005)

    Article  CAS  Google Scholar 

  27. Xu JG, Hu QP, Duan JL, Tian CR. Dynamic changes in γ-aminobutyric acid and GAD activity in oats (Avena nuda L.) during steeping and germination. J. Agr. Food Chem. 58: 9759–9763 (2010)

    Article  CAS  Google Scholar 

  28. Mayer AM, Poljakoff-Mayber A. Metabolism of germinating seeds. 2nd ed, pp. 85–130. In: The Germination of Seed. Mayer AM, Poljakoff-Mayber A (eds). Pergamon Press, New York, NY, USA (1982)

    Chapter  Google Scholar 

  29. Oh SH. Stimulation of γ-aminobutyric acid synthesis activity in BR by a chitosan/Glu germination solution and calcium/calmodulin. J. Biochem. Mol. Biol. 36: 319–325 (2003)

    Article  CAS  Google Scholar 

  30. Kigel J, Galili G. Seed development. pp. 95–10. In: Seed Development and Germination. Kigel J, Galili G (eds). Marcel Dekker, Inc., New York, NY, USA 1995)

    Google Scholar 

  31. Aurisano N, Bertani A, Reggiani R. Anaerobic accumulation of 4-aminobutyrate in rice seedlings: Causes and significance. Phytochemistry 38: 1147–1150 (1995)

    Article  CAS  Google Scholar 

  32. Bautista GM, Lugay JC, Lourades J, Cruz J, Juliani BO. Glu decarboxylase activity as a viability index of artificially dried and stored rice. Cereal Chem. 41: 188–191 (1964)

    CAS  Google Scholar 

  33. Sadami O, Satoshi A, Kazuhito S, Isao M. Enzymatic production of γ-aminobutyric acid using rice (Oryza sativa) germ. Food Sci. Technol. Res. 6: 208–211 (2000)

    Article  Google Scholar 

  34. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22: 497–504 (2005)

    Article  CAS  Google Scholar 

  35. Li Y, Bai Q, Jin X, Wen H, Gu Z. Effects of cultivar and culture conditions on γ-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). J. Sci. Food Agr. 90: 52–57 (2010)

    Article  CAS  Google Scholar 

  36. Su GX, Yu BJ, Zhang WH, Liu YL. Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycinemax (L.) Merr. roots. Plant Physiol. Bioch. 45: 560–566 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiwarun Chaiwanichsiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khwanchai, P., Chinprahast, N., Pichyangkura, R. et al. Gamma-aminobutyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (Oryza sativa L.): Effect of rice cultivars. Food Sci Biotechnol 23, 373–379 (2014). https://doi.org/10.1007/s10068-014-0052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0052-1

Keywords

Navigation