Skip to main content
Log in

β-Glycosidase-assisted bioconversion of ginsenosides in purified crude saponin and extracts from red ginseng (Panax ginseng C. A. Meyer)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Major ginsenosides in ginseng (Panax ginseng) and its products are highly glycosylated, hence poorly absorbed in the gastrointestinal tract. β-Glycosidase-assisted deglycosylation of pure ginsenosides was peformed to study bioconversion mechanisms. Ginsenoside standard compounds, crude saponin, and red ginseng extracts were incubated with β-glycosidase (0.05% w/v, 55°C). β-Glycosidase has a broad specificity for β-glycosidic bonds, hydrolyzing the β-(1→6), α-(1→6), and α-(1→2) glycosidic linkages. The final metabolite of protopanaxadiol ginsenosides was Rg3 while the metabolite of protopanaxatriol ginsenosides was Rh1. β-Glycosidase treatment of red ginseng extracts resulted in a decrease in the amounts of Rb1, Rc, Re, and Rg2 after 24 h, whereas levels of the less glycosylated Rd, Rb1, Rg, Rg3, Rg1, and Rh1 forms increased. When crude saponin was incubated with β-glycosidase for 24 h, levels of Rb1, Rc, Re, and Rg1 decreased while levels of Rd, Rg3, and Rh1 increased as deglycosylated ginsenosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng C.A. Meyer. Phytochem. Rev. 4: 159–175 (2005)

    Article  CAS  Google Scholar 

  2. Huang KC. The Pharmacology of Chinese Herbs. CRC Press, Boca Raton, FL, USA (1999)

    Google Scholar 

  3. Shibata S, Tanaka O, Shoji J, Saito H. Chemistry and pharmacology of panax. pp. 217–284. In: Economic and Medicinal Plants Research. Wagner H, Farnsworth NR, Hikino H (eds). Academic Press, London, UK (1985)

    Google Scholar 

  4. Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69: 218–224 (2008)

    Article  CAS  Google Scholar 

  5. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1–99 (2009)

    CAS  Google Scholar 

  6. Kitagawa I, Taniyama T, Shibuya H, Noda T, Yoshikawa M. Chemical studies on crude drug processing. V. On the constituents of ginseng radix rubra (2): Comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng. Yakugaku. Zasshi. 107: 495–505 (1987)

    CAS  Google Scholar 

  7. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065–1071 (2003)

    Article  Google Scholar 

  8. Hasegawa H. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: metabolic activation of ginsenoside: Deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95: 153–157 (2004)

    Article  CAS  Google Scholar 

  9. Kim MK, Lee JW, Lee KY, Yang DC. Microbial conversion of major ginsenoside Rb(1) to pharmaceutically active minor ginsenoside rd. J. Microbiol. 43: 456–462 (2005)

    CAS  Google Scholar 

  10. Ko SR, Suzuki Y, Suzuki K, Choi KJ, Cho BG. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem. Pharm. Bull. 55: 1522–1527 (2007)

    Article  CAS  Google Scholar 

  11. Hu Y, Luan H, Hao D, Xiao H, Yang S, Yang L. Purification and characterization of a novel ginsenoside-hydrolyzing β-D-glucosidase from the China white jade snail (Achatina fulica). Enzyme Microb. Tech. 40: 1358–1366 (2007)

    Article  CAS  Google Scholar 

  12. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VI. The decomposition products of ginsenoside Rb2 in the stomach of rats. Chem. Pharm. Bull. 39: 400–404 (1991)

    Article  CAS  Google Scholar 

  13. Han BH, Park MH, Han YN, Woo LK, Sankawa U, Yahara S, Tanaka O. Degradation of ginseng saponins under mild acidic conditions. Planta Med. 44: 146–149 (1982)

    Article  CAS  Google Scholar 

  14. Chen YJ, Nose M, Ogihara Y. Alkaline cleavage of ginsenosides. Chem. Pharm. Bull. 35: 1653–1655 (1987)

    Article  CAS  Google Scholar 

  15. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull. 25: 58–63 (2002)

    Article  CAS  Google Scholar 

  16. Chi H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765–771 (2005)

    Article  CAS  Google Scholar 

  17. Ko SR, Choi KJ, Suzuki K, Suzuki Y. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1. Chem. Pharm. Bull. 51: 404–408 (2003)

    Article  CAS  Google Scholar 

  18. Wang DM, Yu HS, Song JG, Xu YF, Liu CY, Jin FX. A novel ginsenosidase from an Aspergillus strain hydrolyzing 6-O-multiglycosides of protopanaxatriol-type ginsenosides, named ginsenosidase type IV. J. Microbiol. Biotechnol. 21: 1057–1063 (2011)

    Article  Google Scholar 

  19. Yoo MH, Yeom SJ, Park CS. Production of aglycon protopanaxadiol via compound K by a thermostable beta-glycosidase from Pyrococcus furiosus. Appl. Microbiol. Biotechnol. 89: 1019–1028 (2011)

    Article  CAS  Google Scholar 

  20. Yu H, Zhang C, Lu M, Sun F, Fu Y, Jin F. Purification and characterization of new special ginsenosidase hydrolyzing multiglycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem. Pharm. Bull. 55: 231–235 (2007)

    Article  CAS  Google Scholar 

  21. Chi H, Kim DH, Ji GE. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol. Pharm. Bull. 28: 2102–2105 (2005)

    Article  CAS  Google Scholar 

  22. Pyo YH, Lee TC, Lee YC. Enrichment of bioactive isoflavones in soymilk fermented with beta-glucosidase-producing lactic acid bacteria. Food Res. Int. 38: 551–559 (2005)

    Article  CAS  Google Scholar 

  23. Yamamoto S, Okada M, Usui T, Sakada K, Toumoto A, Tsuruhami K. Diglycosidase isolated from microorganisms. U.S. Patent 7,109,014 B1 (2006)

    Google Scholar 

  24. Ryu YG, Won B, Park HR, Ghafoor K, Park J. Effects of the betaglycosidase reaction on bio-conversion of isoflavones and quality during tofu processing. J. Sci. Food Agr. 90: 843–849 (2010)

    CAS  Google Scholar 

  25. Ghafoor K, Kim SO, Lee DU, Seong K, Park J. Effects of high hydrostatic pressure on microstructure and color of red ginseng (Panax ginseng). J. Sci. Food Agr. 92: 2975–2982 (2012)

    Article  CAS  Google Scholar 

  26. An YE, Ahn SC, Yang DC, Park SJ, Kim BY, Baik MY. Chemical conversion of ginsenosides in puffed red ginseng. LWT-Food Sci. Tech. 44: 370–374 (2011)

    Article  CAS  Google Scholar 

  27. Kong BM, Park MJ, Min JW, Kim HB, Kim SH, Kim SY. Physicochemical characteristics of white, fermented and red ginseng extracts. J. Ginseng Res. 32: 238–243 (2008)

    Article  Google Scholar 

  28. Zhao X, Gao J, Song C, Fang Q, Wang N, Zhao T, Liu D, Zhou Y. Fungal sensitivity to and enzymatic deglycosylation of ginsenosides. Phytochemistry 78: 65–71 (2012)

    Article  CAS  Google Scholar 

  29. Bae E, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformations. Arch. Pharm. Res. 27: 61–67 (2004)

    Article  CAS  Google Scholar 

  30. Xie HT, Wang GJ, Sun JG, Tucker I, Zhao XC, Xie YY, Li H, Jiang X, Wang R, Xu MJ, Wang W. High-performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solidphase extraction for pharmacokinetik studies. J. Chromatogr. B 818: 167–173 (2005)

    Article  CAS  Google Scholar 

  31. Kim KT, Yoo KM, Lee JW, Eom SH, Hwang IK, Lee CY. Protective effect of steamed American ginseng (Panax quinquefolius L.) on V79-4 cells induced by oxidative stress. J. Ethnopharmacol. 111: 443–450 (2007)

    Article  Google Scholar 

  32. KFDA. Food Code. Health Functional Food Division, Food and Drug Administration, Korea. II.2.1.2-1 (2008)

    Google Scholar 

  33. Kim DH. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notnoginseng. J. Ginseng Res. 36: 1–15 (2012)

    Article  CAS  Google Scholar 

  34. Lee HJ, Lee HS, Cho HJ, Kim SY, Suh HJ.Utilization of hydrolytic enzymes for the extraction of ginsenosides from Korean ginseng leaves. Process Biochem. 47: 538–543 (2012)

    Article  CAS  Google Scholar 

  35. Shehzad O, Ha IJ, Park Y, Ha YW, Kim YS. Development of a rapid and convenient method to separate eight ginsenosides from Panax ginseng by high-speed countercurrent chromatography coupled with evaporative light scattering detection. J. Sep. Sci. 34: 1116–1122 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HR., Ghafoor, K., Lee, D. et al. β-Glycosidase-assisted bioconversion of ginsenosides in purified crude saponin and extracts from red ginseng (Panax ginseng C. A. Meyer). Food Sci Biotechnol 22, 1629–1638 (2013). https://doi.org/10.1007/s10068-013-0260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0260-0

Keywords

Navigation