Skip to main content
Log in

Solvent and solvent to sample ratio as main parameters in the microwave-assisted extraction of polyphenolic compounds from apple pomace

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Microwave-assisted extraction (MAE) in the presence of ethanol and water as solvents was applied as a modern technique to extract polyphenolic compounds from apple pomace and the results were compared to those of Soxhlet extraction and maceration. Various experimental conditions such as microwave power, extraction time, type of solvent, and solvent to sample ratio were considered for the study. Increasing microwave power (from 90 to 360 W) resulted in lower extraction yields. Ethanol-water (at the ratio of 65 to 35) was the best solvent for MAE. However, for the sake of higher water contribution in the extraction, a ratio of 35:65 (ethanol:water) can be selected for a recovery of −90% at a shorter extraction time. The best solvent to sample ratio was found at 20 to 1 level. When used for the extraction of polyphenolic compounds from apple pomace, MAE was faster than maceration and Soxhlet methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cetkovic G, Canadanovic-Brunet J, Djilas S, Savatovic S, Mandic A, Tumbas V. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chem. 109: 340–347 (2008)

    Article  CAS  Google Scholar 

  2. Virot M, Tomao V, Le Bourvellec C, Renard CMCG, Chemat F. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason. Sonchem. 17: 1066–1074 (2010)

    Article  CAS  Google Scholar 

  3. Suarez B, Álvarez AL, García YD, del Barrio G, Lobo AP, Parra F. Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chem. 120: 339–342 (2010)

    Article  CAS  Google Scholar 

  4. Haghighi M, Rezaei K, Labbafi M, Khodaiyan F. On the formulation design and rheological evaluations of pectin-based functional gels. J. Food Sci. 76: E15–22 (2011)

    Article  CAS  Google Scholar 

  5. Gaudout D, Megard D, Iusin C, Esteve C, Lejard F. Phloridzin-rich phenolic fraction and use thereof as a cosmetic, dietary or nutraceutical agent. U.S. Patent 7,041,322 B2 (2006)

    Google Scholar 

  6. Andlauer W, Kolb J, Fürst P. Phloridzin improves absorption of genistin in isolated rat small intestine. Clin. Nutr. 23: 989–995 (2004)

    Article  CAS  Google Scholar 

  7. Ehrenkranz JRL. Method of using dihydrochalcone derivatives to block glucose. U.S. Patent 6,448,232 (2002)

    Google Scholar 

  8. Xi J, Shen DJ, Zhao S, Lu BB, Li Y, Zhang R. Characterization of polyphenolic compounds from green tea leaves using a high hydrostatic pressure extraction. Int. J. Pharm. 382: 139–143 (2009)

    Article  CAS  Google Scholar 

  9. Aslam S, Jahan N, Ali S, Rahman K-U. An innovative microwaveassisted extraction and antioxidant potential of polyphenols from different parts of Ocimum basilicum. J. Med. Plant. Res. 6: 2150–2159 (2012)

    CAS  Google Scholar 

  10. Dragoviæ-Uzelac V, Garofolic IE, Jukic M, Penic M, Dent M. The influence of microwave-assissted extraction on the isolation of sage (Saliva officinalis L.) polyphenols. J. Food Technol. Biotechnol. 50: 377–383 (2012)

    Google Scholar 

  11. Zhang L, Wang Y, Wu D, Xu M, Chen J. Microwave-assisted extraction of polyphenols from Camellia oleifera fruit hull. Molecules 16: 4428–4437 (2011)

    Article  CAS  Google Scholar 

  12. Nkhili E, Tomao V, El Hajji H, El Boustani ES, Chemat F, Dangles O. Microwave-assisted water extraction of green tea polyphenols. Phytochem. Anal. 20: 408–415 (2009)

    Article  CAS  Google Scholar 

  13. Bai XL, Yue TL, Yuan YH, Zhang HW. Optimazation of microwave-assissted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 33: 3751–3758 (2010)

    Article  CAS  Google Scholar 

  14. Song Y, Wu M-Y, He F-T, Zhao Y, Ge B-G. Extraction of apple polyphenols in apple pomace by microwave technique. Food Sci. Technol. doi: CNKI: SUN: SSPJ.0.2007.10.092 (2007)

    Google Scholar 

  15. Chan C-H, Yusoff R, Ngoh G-C, Kung FWL. Microwave-assissted extrction of active ingredients from plants. J. Chromatogr. A 1218: 6213–6225 (2011)

    Article  CAS  Google Scholar 

  16. Eskilsson CS, Bjorklund E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 902: 227–250 (2000)

    Article  CAS  Google Scholar 

  17. Moreira MM, Morais S, Barros AA, Delerue-Matos C, Guido LF. A novel application of microwave-assissted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Anal. Bioanal. Chem. 403: 1019–1029 (2012)

    Article  CAS  Google Scholar 

  18. Spigno G, de Faveri DM. Microwave-assisted extraction of tea phenols: A phenomenological study. J. Food Eng. 93: 210–217 (2004)

    Article  Google Scholar 

  19. Abbasi H, Rezaei K, Emam-djomeh Z, Ebrahimzadeh Mousavi AM. Effect of various extraction conditions on the phenolic contents of pomegranate seed oil. Eur. J. Lipid Sci. Technol. 110: 435–440 (2008)

    Article  CAS  Google Scholar 

  20. Yang L, Jiang J, Li W, Chen J, Wang D, Zhu L. Optimum extraction process of polyphenolic compounds from the bark of Phyllanthus emblica L. based on the response surface methodology. J. Sep. Sci. 32: 1437–1444 (2009)

    Article  CAS  Google Scholar 

  21. Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 102: 771–776 (2007)

    Article  CAS  Google Scholar 

  22. Goli AH, Barzegar M, Sahari MA. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem. 92: 521–525 (2005)

    Article  CAS  Google Scholar 

  23. Guerrero MS, Torres JS, Nunez MJ. Extraction of polyphenolic compounds from white distilled grape pomace: Optimization and modelling. Bioresource Technol. 99: 1311–1318 (2008)

    Article  CAS  Google Scholar 

  24. Proestos C, Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWTFood Sci. Technol. 41: 652–659 (2008)

    CAS  Google Scholar 

  25. Chun OK, Kim DO. Consideration on equivalent chemicals in total phenolic assay of chlorogenic acid-rich plums. Food Res. Int. 37: 337–342 (2004)

    Article  CAS  Google Scholar 

  26. Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J. Chromatogr. A 1054: 95–111 (2004)

    Google Scholar 

  27. Qu W, Pan Z, Ma H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 99: 16–23 (2010)

    Article  Google Scholar 

  28. Radojkovi M, Zekovi Z, Joki S, Senka Vidovi S, Lepojevi Z, Milosevic S. Optimization of solid-liquid extraction of antioxidants from black mulberry leaves by response surface methodology. Food Technol. Biotech. 50: 167–176 (2012)

    Google Scholar 

  29. Wang LJ, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17: 300–312 (2006)

    Article  CAS  Google Scholar 

  30. Eskilsson CS, Bjorklund E, Mathiasson L, Karlsson L, Torstensson A. Microwave-assisted extraction of felodipine tablets. J. Chromatogr. A 840: 59–70 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karamatollah Rezaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei, S., Rezaei, K., Haghighi, M. et al. Solvent and solvent to sample ratio as main parameters in the microwave-assisted extraction of polyphenolic compounds from apple pomace. Food Sci Biotechnol 22, 1–6 (2013). https://doi.org/10.1007/s10068-013-0212-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0212-8

Keywords

Navigation