Skip to main content
Log in

Optimization of nobiletin extraction assisted by microwave from orange byproduct using response surface methodology

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Nobiletin (NOB) is a well-known polymethoxylated flavone that has only been found in citrus. The objective of this study is to obtain the optimal conditions for extracting nobiletin from sweet orange residues by microwave-assisted extraction (MAE) using response surface method. By using the Box-Behnken experimental design and SAS software 3 independent variables including solid/solvent ratio, microwave power, and treatment time were examined for the response variable nobiletin extraction yield. The regression Eq. 7 statistically significant (p<0.001) and R2 was 0.9189. Based on our regression result and considering the feasibility of experiment conduction, we chose the following independent variable values as the optimized conditions for the extraction of NOB: 1:21.91 (g/mL) for the solid/solvent ratio, 14.16 min for the treatment time, and 693.72 W for the microwave power. Under these conditions, the nobiletin yield of 267.8 μg/g of byproduct was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mouly PP, Gaydou EM, Aazouyan C. Separation and quantitation of orange juices using liquid chromatography of polymethoxylated flavones. Analusis 27: 284–288 (1999)

    Article  CAS  Google Scholar 

  2. Dugo P, Mondello L, Dugo G, Heaton DM, Bartle KD, Clifford AA, Myers P. Rapid analysis of polymethoxylated flavones from citrus oils by supercritical fluid chromatography. J. Agr. Food Chem. 44: 3900–3905 (1996)

    Article  CAS  Google Scholar 

  3. Delaney B, Phillps K, Vasquez C, Wilson A, Cox D, Wang HB, Manthey J. Genetic toxieity of astandardized mixture of citrus polymethoxylated flavones. Food Chem. Toxicol. 40: 617–624 (2002)

    Article  CAS  Google Scholar 

  4. Delaney B, Phillip K, Buswell D, Mowry B, Nickels D, Cox D, Wang HB, Manthey J. Immunotoxicity of a standardized citrus polymethoxylated flavone extract. Food Chem. Toxicol. 11: 1087–1094 (2001)

    Google Scholar 

  5. Manthey JA, Grohmann K. Phenols in citrus peel by products concentrations of hydroxycinnamates and polylmethoxylated flavones in citrus peel molasses. J. Agr. Food Chem. 49: 3268–3273 (2001)

    Article  CAS  Google Scholar 

  6. Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange C, Remesy C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur. J. Clin. Nutr. 57: 235–242 (2003)

    Article  CAS  Google Scholar 

  7. Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotech. Bioch. 70: 178–192 (2006)

    Article  CAS  Google Scholar 

  8. Miyata Y, Sato T, Imada K, Dobashi A, Yano M, Ito A. A citrus polymethoxyflavonoid, nobiletin, is a novel MEK inhibitoir that exhibits antitumor metastasis in human fibrosarcoma HT-1080 cells. Biochem. Bioph. Res. Co. 366: 168–173 (2008)

    Article  CAS  Google Scholar 

  9. Yi ZB, Yu Y, Liang YZ, Zeng B. In vitro antioxidant and antimicrobial activities of the extract of pericarpium citri reticulatae of a new citrus cultivar and its main flavonoids. LWT-Food Sci. Technol. 41: 597–603 (2008)

    Article  CAS  Google Scholar 

  10. Sunagawa Y, Yabuki S, Murakami A, Wada H, Katanasaka Y, Fukuda H, Kimura T, Fujita M, Hasegawa K, Morimoto M. Nobiletin, a citrus flavonoid, prevents the worsening of heart failure in rats with myocardial infarction. J. Card. Fail. 16: S170–S170 (2010)

    Article  Google Scholar 

  11. Lee YC, Cheng TH, Lee JS, Chen JH, Liao YC, Fong Y, Wu CH, Shih YW. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol. Cell. Biochem. 347: 103–115 (2011)

    Article  CAS  Google Scholar 

  12. Onozuka H, Nakajima A, Matsuzaki K, Shin RW, Ogino K, Saigusa D, Tetsu N, Yokosuka A, Sashida Y, Mimaki Y, Yamakuni T, Ohizumi Y. Nobiletin, a citrus flavonoid, improves memory impairment and a beta pathology in a transgenic mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 326: 739–744 (2008)

    Article  CAS  Google Scholar 

  13. Wang LC, Weller L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech. 17: 300–312 (2006)

    Article  CAS  Google Scholar 

  14. Menéndez J, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM. Microwave heating processes involving carbon materials. Fuel Process. Technol. 91: 1–8 (2010)

    Article  Google Scholar 

  15. Ohlsson T, Bengtsson N. Microwave technology and foods. Adv. Food Nutr. Res. 43: 65–140 (2001)

    Article  CAS  Google Scholar 

  16. Inoue T, Tsubaki S, Ogawa K, Onishi K, Azuma J. Isolation of hesperidin from peels of thinned citrus unshiu fruits by microwaveassisted extraction. Food Chem. 123: 542–547 (2010)

    Article  CAS  Google Scholar 

  17. Lucchesi ME, Chemat F, Smadja J. An original solvent free microwave extraction of essential oils from spices. Flavour Frag. J. 19: 134–138 (2004)

    Article  CAS  Google Scholar 

  18. He L, Gongke L, Zhanxia Z. Effects of operating parameters on the extraction of resveratrol in huzhang (Polygonum cuspidatum) using microwave-assisted extraction. Chinese J. Anal. Chem. 31: 1341–1344 (2003)

    Google Scholar 

  19. Shu YY, Lai TL, Lin H, Yang TC, Chang CP. Study of factors affecting on the extraction efficiency of polycyclic aromatic hydrocarbons from soils using open-vessel focused microwaveassisted extraction. Chemosphere 52: 1667–1676 (2003)

    Article  CAS  Google Scholar 

  20. Bayramoglu B, Sahin S, Sumnu G. Solvent-free microwave extraction of essential oil from oregano. J. Food Eng. 88: 535–540 (2008)

    Article  CAS  Google Scholar 

  21. Zhilu A, Juan G, Yuhong W, Yanxia L, Qiuyan Z. Microwaveassisted extraction technique of apple polyphenols in apple pomace. Trans. Chinese Soc. Agr. Eng. 22: 188–191 (2006)

    Google Scholar 

  22. Li MJ, You JY, Liu ZY, Zhang HQ. Microwave-assisted dynamic extraction of flavonoids from flos sophaoae. Chem. Res. Chinese U. 25: 850–852 (2004)

    CAS  Google Scholar 

  23. Zhai Y, Sun S, Wang Z, Cheng J, Sun Y, Wang L, Zhang Y, Zhang H, Yu A. Microwave extraction of essential oils from dried fruits of Illicium verum Hook. f. and Cuminum cyminum L. Using ionic liquid as the microwave absorption medium. J. Sep. Sci. 32: 3544–3549 (2009)

    Article  CAS  Google Scholar 

  24. Min X, Lu W. Study on extraction of cordycepin with microwave. Food Sci. 27: 248–251 (2006)

    Google Scholar 

  25. Xie JH, Xie MY, Shen MY, Nie SP, Li C, Wang YX. Optimization of microwave-assisted extraction of polysaccharides from Cyclocarya paliurus (Batal.) iljinskaja using response surface methodology. J. Sci. Food Agr. 90: 1353–1360 (2010)

    Article  CAS  Google Scholar 

  26. Lee YH, Charles AL, Kung HF, Ho CT, Huang TC. Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Ind. Crop Prod. 31: 59–64 (2010)

    Article  CAS  Google Scholar 

  27. Hemwimol S, Pavasant P, Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason. Sonochem. 13: 543–548 (2006)

    Article  CAS  Google Scholar 

  28. Eskilsson CS, Bjorklund E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 902: 227–250 (2000)

    Article  CAS  Google Scholar 

  29. Baş D, Boyacı İH. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78: 836–845 (2007)

    Article  Google Scholar 

  30. Zhao W, Yu Z, Liu J, Yu Y, Yin Y, Lin S, Chen F. Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design. J. Sci. Food Agr. 91: 2201–2209 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, H., Dou, H. et al. Optimization of nobiletin extraction assisted by microwave from orange byproduct using response surface methodology. Food Sci Biotechnol 22 (Suppl 1), 153–159 (2013). https://doi.org/10.1007/s10068-013-0061-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0061-5

Keywords

Navigation