Skip to main content
Log in

Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the effects of soy bean extract fermented by Bacillus subtilis MORI (BTD-1) on blood glucose, hemoglobin A1c (HbA1c), plasma insulin, and pancreatic β islets in db/db mice. The BTD-1 (500 mg/kg) group showed significantly lower fasting blood glucose level (p<0.01) and postprandial 2 h blood glucose level (p<0.01) compared with the db control group. The BTD-1 (500 mg/kg) group showed significantly lower HbA1c level compared with the db control group (p<0.01). After 8 weeks of BTD-1 administration, the pancreatic islet architecture was preserved and the immunofluorescent intensities of insulin in BTD-1 (500mg/kg) group apparently increased compared to in the db control group. Plasma insulin levels were found to be significantly higher in the BTD-1 (500 mg/kg) group than in the db control group (p<0.05). In summary, our results suggest that BTD-1 has an anti-diabetes effect in a non-insulin dependent diabetes mellitus mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puavilai G, Chanprasertyotin S, Sriphrapradaeng A. Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance: 1997 Criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO Consultation Criteria, and 1985 WHO Criteria. Diabetes Res. Clin. Pr. 44: 21–26 (1999)

    Article  CAS  Google Scholar 

  2. Campbell RK. Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clin. Ther. 33: 511–527 (2011)

    Article  CAS  Google Scholar 

  3. Haffner SM, Howard G, Mayer E, Bergman RN, Savage PJ, Rewers M, Mykkanen L, Karter AJ, Hamman R, Saad MF. Insulin sensitivity and acute insulin response in African-Americans, non-Hispanic whites, and Hispanics with NIDDM: The insulin resistance atherosclerosis study. Diabetes 46: 63–69 (1997)

    Article  CAS  Google Scholar 

  4. Del Prato S, Bianchi C, Marchetti P. β-Cell function and antidiabetic pharmacotherapy. Diabetes Metab. Res. 23: 518–527 (2007)

    Article  Google Scholar 

  5. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pr. 28: 103–117 (1995)

    Article  CAS  Google Scholar 

  6. White JR. Alogliptin for the treatment of type 2 diabetes. Drugs Today 47: 99–107 (2011)

    CAS  Google Scholar 

  7. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes. J. Am. Med. Assoc. 287: 360–372 (2002)

    Article  CAS  Google Scholar 

  8. Sheehan MT. Current therapeutic options in type 2 diabetes mellitus: A practical approach. Clin. Med. Res. 1: 189–200 (2003)

    Article  Google Scholar 

  9. van de Laar FA, Lucassen PL, Akkemans RP, van de Lisdonk EH, Rutten GE, van Weel C. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care 28: 154–163 (2005)

    Article  Google Scholar 

  10. Lee A, Patrick P, Wishart J, Horowitz M, Morley JE. The effects of miglitol on glucagon-like peptide-1 secretion and appetite sensations in obese type 2 diabetics. Diabetes Obes. Metab. 4: 329–335 (2002)

    Article  CAS  Google Scholar 

  11. Rabasa-Lhoret R, Chiasson JL. Potential of α-glucosidase inhibitors in elderly patients with diabetes mellitus and impaired glucose tolerance. Drug. Aging 13: 131–143 (1998)

    Article  CAS  Google Scholar 

  12. DeFronze RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 131: 281–303 (1999)

    Google Scholar 

  13. Grover JK, Yadav S, Vats V. Medicinal plants of India with antidiabetic potential. J. Ethnopharmacol. 81: 81–100 (2002)

    Article  CAS  Google Scholar 

  14. Nakanishi H, Onose S, Kitahara E, Chumchuen S, Takasaki M, Konishi H. Effect of environmental conditions on the α-glucosidase inhibitory activity of mulberry leaves. Biosci. Biotech. Bioch. 75: 2293–2296 (2011)

    Article  CAS  Google Scholar 

  15. Ezure Y, Maruo S, Miyazaki K, Kawamata M. Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agr. Biol. Chem. Tokyo 49: 1119–1125 (1985)

    Article  CAS  Google Scholar 

  16. Kwon HJ, Chung JY, Kim JY, Kwon O. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: In vivo and in vitro studies. J. Agr. Food Chem. 59: 3014–3019 (2011)

    Article  CAS  Google Scholar 

  17. Kimura T, Nakagawa K, Saito Y, Yamagishi K, Suzuki M, Yamaki K, Shinmoto H, Miyazawa T. Simple and rapid determination of 1-deoxynojirimycin in mulberry leaves. BioFactors 22: 341–345 (2004)

    Article  CAS  Google Scholar 

  18. Zhu YP, Yamaki K, Yoshihashi T, Ohnishi Kameyama M, Li XT, Cheng YQ, Mori Y, Li LT. Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (meitaoza). J. Agr. Food Chem. 58: 4097–4103 (2010)

    Article  CAS  Google Scholar 

  19. Kim HS, Lee JY, Hwang KY, Cho YS, Park YS, Kang KD, Seong SI. Isolation and identification of a Bacillus sp. producing α-glucosidase inhibitor 1-deoxynojirimycin. Korean J. Microbiol. Biothechnol. 39: 49–55 (2011)

    CAS  Google Scholar 

  20. Kim JW, Kim SU, Lee HS, Kim I, Ahn MY, Kang SR. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1002: 93–99 (2003)

    Article  CAS  Google Scholar 

  21. Matsui T, Ueda T, Sugita K, Terahara N, Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agr. Food Chem. 49: 1948–1951 (2011)

    Article  Google Scholar 

  22. Murao S, Miyata S. Isolation and characterization of a new trehalase inhibitor, S-GI. Agr. Biol. Chem. Tokyo 44: 219–221 (1980)

    Article  CAS  Google Scholar 

  23. Cho YS, Park YS, Lee JY, Kang KD, Hwang KY, Seong SI. Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Kororean Soc. Food Sci. Nutr. 37: 1401–1407 (2008)

    Article  CAS  Google Scholar 

  24. Kwon DY, Daily JW 3rd, Kim HJ, Park S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 30: 1–13 (2010)

    Article  CAS  Google Scholar 

  25. Fujita H, Yamagami T, Ohshima K. Fermented soybean-derived water-soluble touchi extract inhibits alpha-glucosidase and is antiglycemic in rats and humans after single oral treatments. J. Nutr. 131: 1211–1213 (2001)

    CAS  Google Scholar 

  26. Chae JY, Lee JY, Hoang IS, Whangbo D, Choi PW, Lee WC, Kim JW, Kim SY, Choi SW, Rhee SJ. Analysis of functional components of leaves of different mulberry cultivars. J. Korean Soc. Food Sci. Nutr. 32: 15–21 (2003)

    Article  Google Scholar 

  27. Hwang KY, Kim YH, Cho YS, Park YS, Lee JY, Kang KD, Kim K, Joo DK, Ahn DK, Seong SI. Hypoglycemic effect of fermented soybean culture mixed with mulberry leaves on neonatal streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 37: 452–458 (2008)

    Article  Google Scholar 

  28. Kim JY, Kwon HJ, Jung JY, Kwon HY, Baek JG, Kim YS, Kwon O. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. J. Agr. Food Chem. 58: 6666–6671 (2010)

    Article  CAS  Google Scholar 

  29. Hanefeld M, Temelkova-Kurktschiev T. Control of post-prandial hyperglycemia — An essential part of good diabetes treatment and prevention of cardiovascular complications. Nutr. Metab. Cardiovas. 12: 98–170 (2002)

    CAS  Google Scholar 

  30. Gerich JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch. Int. Med. 163: 1306–1316 (2003)

    Article  CAS  Google Scholar 

  31. Kijima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, Miyazawa T. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J. Clin. Biochem. Nutr. 47: 155–161 (2010)

    Article  Google Scholar 

  32. Kimura T, Kakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, Oita S, Oikawa S, Miyazawa T. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J. Agr. Food. Chem. 55: 5869–5874 (2007)

    Article  CAS  Google Scholar 

  33. Lee NJ, Jung YR, Lin CM, Paek KY, Kang JK. Antidiabetic effect of cultured ginseng root extracts in type 2 diabetic mice. Lab. Anim. Res. 24: 241–247 (2008)

    Google Scholar 

  34. Butler AE, Janson J, Soeller WC, Butler PC. Increased β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes: Evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52: 2304–2314 (2003)

    Article  CAS  Google Scholar 

  35. Hsu YJ, Lee TH, Chang CLT, Huang YT, Yang WC. Antihyperglycemic effects and mechanism of Bidens pilosa water extract. J. Ethnophrmacol. 122: 379–383 (2009)

    Article  Google Scholar 

  36. Koyama M, Wada R, Mizukami H, Sakuraba H, Odaka H, Ikeda H, Yagihashi S. Inhibition of progressive reduction of islet β cell mass in spontaneously diabetic Goto-Kakizaki rats by α glucosidase inhibitor. Metabolism 49: 347–352 (2000)

    Article  CAS  Google Scholar 

  37. DeFronzo RA, Del Prato S. Insulin resistance and diabetes mellitus. J. Diabetes Complicat. 10: 243–245 (1996)

    Article  CAS  Google Scholar 

  38. Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes 37: 1594–1607 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Gyo Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, H., Jung, H., Karuppasamy, S. et al. Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci Biotechnol 21, 1669–1676 (2012). https://doi.org/10.1007/s10068-012-0222-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0222-y

Keywords

Navigation