Skip to main content
Log in

Antioxidant activity of cyanidins isolated from Ogapy (Acanthopanax divaricatus var. albeofructus) fruits in U937 macrophages

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are continuously produced in aerobic organisms. Overproduction of ROS is known to play a crucial role in the pathogenesis of many cardiovascular diseases, including atherosclerosis and hypertension. Superoxide dismutase (SOD) and catalase (CAT) play critical roles on the removal of excess ROS. In the present study, we investigated the antioxidant activity of cyanidins from ogapy (Acanthopanax divaricatus var. albeofructus, ADA) fruits against oxidative stress in hydrogen peroxide (H2O2)-pretreated U937 macrophages, and explored the plausibility of the therapeutic effect of cyanidins on atherosclerosis. As a result, H2O2 generation and lipid peroxidation induced by H2O2-pretreatment was decreased by the treatment of cyanidins in U937 macrophages. In addition, increased activity of SOD and CAT was shown in H2O2-pretreated cells when treated with cyanidins. Overall, the results obtained in this study showed that cyanidin 3-galactoside and cyanidin 3-lathyroside from ADA fruits could protect macrophages against the damaging effects of H2O2 treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alom-Ruiz SP, Anilkumar N, Shah AM. Reactive oxygen species and endothelial activation. Antioxid. Redox Sign. 10: 1089–1100 (2008)

    Article  CAS  Google Scholar 

  2. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung C. 279: L1005–L1028 (2000)

    CAS  Google Scholar 

  3. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: Animal and human studies. Circulation 108: 2034–2040 (2003)

    Article  Google Scholar 

  4. Angelopoulou R, Lavranos G, Manolakou P. ROS in the aging male: Model diseases with ROS-related pathophysiology. Reprod. Toxicol. 28: 167–171 (2009)

    Article  CAS  Google Scholar 

  5. Oiknine J, Aviram M. Increased susceptibility to activation and increased uptake of low density lipoprotein by cholesterol-loaded macrophages. Arterioscler. Thromb. 12: 745–753 (1992)

    Article  CAS  Google Scholar 

  6. Forman HJ, Torres M. Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling. Am. J. Resp. Crit. Care 166: S4–S8 (2002)

    Article  Google Scholar 

  7. Maxwell SR. Prospects for the use of antioxidant therapies. Drugs 49: 345–361 (1995)

    Article  CAS  Google Scholar 

  8. Dash DK, Yeligar VC, Nayak SS, Ghosh T, Rajalingam D, Sengupta P, Maiti BC, Maity TK. Evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R. Br. on paracetamol-induced hepatotoxicity in rats. Trop. J. Pharm. Res. 6: 755–765 (2007)

    Article  Google Scholar 

  9. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B. 39: 44–84 (2007)

    Article  CAS  Google Scholar 

  10. Cambie RC, Ferguson LR. Potential functional foods in the traditional Maori diet. Mutat. Res. 523–524: 109–117 (2003)

    Google Scholar 

  11. Escribano-Bailón MT, Santos-Buelga C, Rivas-Gonzalo JC. Anthocyanins in cereals. J. Chromatogr. A 1054: 129–141 (2004)

    Google Scholar 

  12. Heinonen IM, Meyer AS, Frankel EN. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J. Agr. Food Chem. 46: 4107–4112 (1998)

    Article  CAS  Google Scholar 

  13. Kähkönen MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J. Agr. Food Chem. 49: 4076–4082 (2001)

    Article  Google Scholar 

  14. Yi JM, Kim MS, Seo SW, Lee KN, Yook CS, Kim HM. Acanthopanax senticosus root inhibits mast cell-dependent anaphylaxis. Clin. Chim. Acta 312: 163–168 (2001)

    Article  CAS  Google Scholar 

  15. Lyu SY, Kim JY, Noh B, Park WB. Antioxidative activity of water extract of different parts of Acanthopanax divaricutus var. albeofructus. Yakhak Hoeji 50: 191–198 (2006)

    CAS  Google Scholar 

  16. Kim JY, Yang KS. Antioxidantive activities of triterpenoids and lignans from Acanthopanax divaricatus var. albeofructus. Yakhak Hoeji 49: 236–240 (2004)

    Google Scholar 

  17. Lyu SY, Noh B, Park WB. Modulation of Th1/Th2 cytokine secretion in a human peripheral blood mononuclear cell by water extract of Acanthopanax divaricatus var. albeofructus fruits. Yakhak Hoeji 52: 27–32 (2008)

    CAS  Google Scholar 

  18. Zu SM, Yang KS. Anti-lipid peroxidation activity of Acanthopanax divaricatus var. albeofructus. Yakhak Hoeji 48: 99–103 (2004)

    CAS  Google Scholar 

  19. Hahn DR, Park SJ. Two cyanidin compound from th fruits of Acanthopanax divaricus var. albeofructus. Nat. Prod. Sci. 16: 198–201 (2010)

    CAS  Google Scholar 

  20. Joyce DA. Oxygen radicals in disease. Adv. Drug Reac. Bull. 127: 476–479 (1987)

    Article  Google Scholar 

  21. Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ. Atherosclerosis: Basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91: 2488–2496 (1995)

    Article  CAS  Google Scholar 

  22. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. New Engl. J. Med. 352: 1685–1695 (2005)

    Article  CAS  Google Scholar 

  23. Wick G, Knoflach M, Xu Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu. Rev. Immunol. 22: 361–403 (2004)

    Article  CAS  Google Scholar 

  24. Halliwell B, Gulteridge JMC. Role of free radicals and catalytic metal ions in human diseases: An overview. Method. Enzymol. 105: 105–114 (1990)

    Google Scholar 

  25. Aruoma OI. Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol. 32: 671–683 (1994)

    Article  CAS  Google Scholar 

  26. Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Res. 31: 273–300 (1000)

    Article  Google Scholar 

  27. Ramachandran S, Rong R, Parthasarathy S. Oxidants and antioxidants affect the expression of glycodelin. Free Radical Res. 34: 818–823 (2003)

    CAS  Google Scholar 

  28. Day BJ. Catalytic antioxidants: A radical approach to new therapeutics. Drug Discov. Today 9: 557–566 (2004)

    Article  CAS  Google Scholar 

  29. Waddington RJ, Moseley R, Embery G. Reactive oxygen species: A potential role in the pathogenesis of periodontal diseases. Oral Dis. 6: 138–151 (2000)

    Article  CAS  Google Scholar 

  30. Mueller S, Riedel HD, Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood 90: 4973–4978 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Bong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyu, SY., Shin, A.H., Hahn, D.R. et al. Antioxidant activity of cyanidins isolated from Ogapy (Acanthopanax divaricatus var. albeofructus) fruits in U937 macrophages. Food Sci Biotechnol 21, 1445–1450 (2012). https://doi.org/10.1007/s10068-012-0190-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0190-2

Keywords

Navigation