Skip to main content
Log in

Anti-obesity effect of komulkosiraegi [Gracilaria vermiculophylla (Ohmi) Papenfuss] extract in 3T3-L1 cells

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The ingestion of edible seaweed has long been believed to be beneficial to human health due to its numerous biological actions. In the present study, the ethyl acetate fraction of a komulkosiraegi [Gracilaria vermiculophylla (Ohmi) Papenfuss] ethanol extract (GEFr) was found to potently inhibit adipogenesis of 3T3-L1 preadipocytes, decreasing triglycerol accumulation and the expression of peroxisome proliferator-activated receptor γ (PPARγ), members of the CCAAT/enhancer-binding protein (C/EBP) family, and fatty acid binding protein 2 (aP2). In mature adipocytes, GEFr was found to significantly activate AMP-activated protein kinase (AMPK) by activating liver kinase B1 (LKB1) and stimulating intracellular reactive oxygen species generation. The mRNA levels of genes involved in lipid catabolism were up-regulated. Also, GEFr increased lipolysis in a dose-dependent manner. Taken together, these results suggest that GEFr has potential for use in therapies designed to improve obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephane G, Tseng YH, Kahn CR. Developmental origin of fat tracking obesity to its source. Cell 131: 242–256 (2007)

    Article  Google Scholar 

  2. Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS. Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 15: 2571–2582 (2007)

    Article  CAS  Google Scholar 

  3. Fruhbeck G. Overview of adipose tissue and its role in obesity and metabolic disorders. Method. Mol. Biol. 456: 1–22 (2008)

    Article  Google Scholar 

  4. Tang Q-Q, Otto TC, Lane MD. Mitotic clonal expansion: A synchronous process required for adipogenesis. P. Natl. Acad. Sci. USA 100: 44–49 (2003)

    Article  CAS  Google Scholar 

  5. Gregoire FM, Sams CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 78: 783–809 (1998)

    CAS  Google Scholar 

  6. Unger RH. The hyperleptinemia of obesity-regulator of caloric surpluses. Cell 117: 145–146 (2004)

    Article  CAS  Google Scholar 

  7. Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocyte and angiogenesis and obesity in C57/BL mice. J. Nutr. 139: 919–925 (2009)

    Article  CAS  Google Scholar 

  8. Hardie DG, Hawley SA. AMP-activated protein kinase: The energy charge hypothesis revisited. Bioessays 23: 1112–1119 (2001)

    Article  CAS  Google Scholar 

  9. Sim AT, Hardie DG. The low activity of acetyl-CoA carboxylase in basal and glucagon-stimulated hepatocytes is due to phosphorylation by the AMP-activated protein kinase and not cyclic AMP-dependent protein kinase. FEBS Lett. 233: 294–298 (1988)

    Article  CAS  Google Scholar 

  10. Jeong YS, Jung HK, Cho KH, Youn KS, Hong JH. Anti-obesity effect of grape skin extract in 3T3-L1 adipocytes. Food Sci. Biotechnol. 20: 635–642 (2011)

    Article  Google Scholar 

  11. Kang SI, Kim MH, Shin HS, Kim HM, Hong YS, Park JG, Ko HC, Lee NH, Chung WS, Kim SJ. A water-soluble extract of Petalonia binghamiae inhibits the expression of adipogenic regulators in 3T3-L1 preadipocytes and reduces adiposity and weight gain in rat fed a high-fat diet. J. Nutr. Biochem. 21: 1251–1257 (2010)

    Article  CAS  Google Scholar 

  12. Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717–726 (2008)

    Article  CAS  Google Scholar 

  13. Imbs AB, Bologodskaya AA, Nevshupova NV, Khotimchenko SV, Titlyanov EA. Response of prostaglandin content in the red alga Gracilaria verrucosa to season and solar irradiance. Phytochemistry 58: 1067–1072 (2001)

    Article  CAS  Google Scholar 

  14. Heo SJ, Cha SH, Lee KW, Jeon YJ. Antioxidant activities of red alga from Jeju island. Algae 21: 149–156 (2006)

    Article  Google Scholar 

  15. Dang HT, Lee HJ, Yoo ES, Shinde PB, Lee YM, Hong JK, Kim DK, Jung JH. Anti-inflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J. Nat. Prod. 71: 232–240 (2008)

    Article  CAS  Google Scholar 

  16. Lee HJ, Dang HT, Kang GJ, Yang EJ, Park SS, Yoon WJ, Jung JH, Kang HK, Yoo ES. Two enone fatty acids isolated from Gracilaria verrucosa suppress the production of inflammatory mediators by down-reglating NF-κB and stat1 activity in lipopolysaccharidestimulated RAW 264.7 cells. Arch. Pharm. Res. 32: 453–462 (2009)

    Article  Google Scholar 

  17. Miao CH, Du J, Dang HT, Jeong IH, You S, Park JS, Jung JH, Kim DK. Apoptotic activity of fatty acid derivatives may correlate with their inhibition of DNA replication. Int. J. Oncol. 33: 1291–1298 (2008)

    CAS  Google Scholar 

  18. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha JH, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 ard associated with the activateion of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Bioph. Res. Co. 364: 1002–1008 (2007)

    Article  CAS  Google Scholar 

  19. Hardie DG. AMP-activated/SNR1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Bio. 8: 774–785 (2007)

    Article  CAS  Google Scholar 

  20. Zhang BB, Zhou G, Li C. AMPK: An emerging drug target for diabetes and the metabolic syndrom. Cell Metab. 9: 407–416 (2009)

    Article  Google Scholar 

  21. Merrill GF, Kurch EJ, Hardie DG, Winder WW. AICA riposide increased AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol.-Endoc. M. 273: E1107–E1112 (1997)

    CAS  Google Scholar 

  22. Hao J, Shen W, Yu G, Jia H, Li X, Feng Z, Wang Y, Wever P, Wertz K, Sharman E, Liu J. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocyte. J. Nutr. Biochem. 21: 634–644 (2010)

    Article  CAS  Google Scholar 

  23. Fleury C, Neverova M, Collins S, Raimbalt S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH. Uncoupling protein 2: A novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15: 269–272 (1997)

    Article  CAS  Google Scholar 

  24. Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D. Investigating the mechanism for AMP activation of the AMPactivated protein kinase cascade. Biochem. J. 403: 139–148 (2007)

    Article  CAS  Google Scholar 

  25. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha JH, Park OJ. Genistein, EGCG, capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Bioph. Res. Co. 338: 694–699 (2005)

    Article  CAS  Google Scholar 

  26. Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKα-PPARγ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα-COX-2 in cancer cells. J. Agr. Food Chem. 57: 305–310 (2009)

    Article  CAS  Google Scholar 

  27. Yamaguchi S, Katahira H, Ozawa S, Nakamichi Y, Tanaka T, Shimoyama T, Takahashi K, Yoshimoto K, Imaizumi MO, Nagamatsu S, Ishida H. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activety in 3T3-L1 adipocytes. Am. J. Physiol.-Endoc. M. 289: E643–E649 (2005)

    CAS  Google Scholar 

  28. Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hainault E, Ferre P, Foufelle F. Anti-lipolytic action of AMPactivated protein kinase in redent adipocytes. J. Biol. Chem. 280: 25250–25257 (2005)

    Article  CAS  Google Scholar 

  29. Lenhard JM, Kliewer SA, Paulik MA, Plunket KD, Lehmann JM, Weiel JE. Effects of troglitazone and metformin on glucose and lipid metabolism. Biochem. Pharmacol. 54: 801–808 (1997)

    Article  CAS  Google Scholar 

  30. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenylk-Melody J, Wu M, Vertre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyer LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167–1174 (2001)

    CAS  Google Scholar 

  31. Ciaraldi TP, Kong APS, Chu NV, Kim DD, Baxi S, Loviscach M, Plodkowski R, Reitz R, Caulfield M, Mudaliar S, Henry RR. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes 51: 30–36 (2002)

    Article  CAS  Google Scholar 

  32. Manickam E, Sinclair AJ, Cameron-Smitn D. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes. Lipids Health Dis. 9: 57 (2010)

    Article  Google Scholar 

  33. Petersen RK, Jorgensen C, Rustan AC, Froyland L, Muller-Decker K, Furstenberger G, Berge RK, Kristiansen K, Madsen L. Arachidonic acid-dependent inhibition of adipocyte differentiation requires PKA activity and is associated with sustained expression of cyclooxygenases. J. Lipid Res. 44: 2320–2330 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HM., Kang, SI., Shin, HS. et al. Anti-obesity effect of komulkosiraegi [Gracilaria vermiculophylla (Ohmi) Papenfuss] extract in 3T3-L1 cells. Food Sci Biotechnol 21, 83–89 (2012). https://doi.org/10.1007/s10068-012-0010-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0010-8

Keywords

Navigation