Skip to main content
Log in

Anti-obesity effect of grape skin extract in 3T3-L1 adipocytes

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study was to determine the effects of grape skin which was well known as natural antioxidant using 3T3-L1 adipocyte, representative cells with morphological and biochemical characteristics of adipocytes. Grape skin extract (GSE) suppressed the differentiation of 3T3-L1 adipocytes, and decreased the triglycerides content with lipid accumulation. The adipogenesis inhibitory effect of GSE was confirmed in adipocyte hormone secretion, such as leptin and adiponectin, as well as glycerol-3-phosphate dehydrogenase activity. However, apoptosis of both mature pre-adipocytes and adipocytes was not induced by GSE. The level of gene and protein expression was observed to understand the antiobesity mechanism underlying GSE. GSE treatment of 3T3-L1 cells resulted in decrease in the adipogenic transcription factor (PPARγ, C/EBPα, and SREBP1) gene and protein expression, and preadipocyte secreted factor-1 mRNA was up-regulated compared to the adipocyte control. The lipolysis-related mRNA level (hormone-sensitive lipase, lipoprotein lipase, and perilipin) in adipocytes with the addition of grape skin was similar to preadipocytes. These results support the potential application of GSE as a natural anti-obesity material in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 78: 517S–520S (2003)

    CAS  Google Scholar 

  2. Rayalam S, Della-Feraa MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717–726 (2008)

    Article  CAS  Google Scholar 

  3. Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 11: 622–646 (2010)

    Article  CAS  Google Scholar 

  4. Yinrong L, Yeap F. The polyphenol constituents of grape pomace. Food Chem. 65: 1–8 (1999)

    Article  Google Scholar 

  5. Rica-Evans CA, Miller NJ, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159 (1997)

    Article  Google Scholar 

  6. Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, Shachter NS, Fernandez ML. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr. 135: 1911–1917 (2005)

    CAS  Google Scholar 

  7. Zhao J, Wang J, Chen Y, Agarwal R. Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3′-gallate as the most effective antioxidant constituent. Carcinogenesis 20: 1737–1745 (1999)

    Article  CAS  Google Scholar 

  8. Rayalam S, Della-Fera MA, Yang JY, Park HJ, Ambati S, Baile CA. Resveratrol potentiates genistein’s antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J. Nutr. 137: 2668–2673 (2007)

    CAS  Google Scholar 

  9. Pascual-Martí MC, Salvador A, Chafer A, Berna A. Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta 54: 735–740 (2001)

    Article  Google Scholar 

  10. Yoo MA, Kim JS, Chung HK, Park WJ, Kang MH. The antioxidant activity of various cultivars of grape skin extract. Food Sci. Biotechnol. 16: 884–888 (2007)

    CAS  Google Scholar 

  11. Yoo MA, Chung HK, Kang MH. Evaluation of physicochemical properties in different cultivar grape seed waste. Food Sci. Biotechnol. 13: 26–29 (2004)

    CAS  Google Scholar 

  12. Souquet JM, Cheynier V, Brossaud F, Moutounet M. Polymeric proanthocyanidins from grape skins. Phytochemistry 43: 509–512 (1996)

    Article  CAS  Google Scholar 

  13. Lee SJ, Choi SK, Seo JS. Grape skin improves antioxidant capacity in rats fed a high fat diet. Nutr. Res. Pract. 3: 279–285 (2009)

    Article  CAS  Google Scholar 

  14. Chuang CC, Akkarach B, Arion K, Angel O, Tiffany W, Brent D, Michael KM. Grape powder extract attenuates tumor necrosis factor α-mediated inflammation and insulin resistance in primary cultures of human adipocytes. J. Nutr. Biochem. 22: 89–94 (2011)

    Article  CAS  Google Scholar 

  15. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Bioph. Res. Co. 338: 694–699 (2005)

    Article  CAS  Google Scholar 

  16. Telli C, Serper A, Dogan AL, Guc D. Evaluation of the cytotoxicity of calcium phosphate root canal sealers by MTT assay. J. Endodont. 25: 811–813 (1999)

    Article  CAS  Google Scholar 

  17. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 97: 493–497 (1992)

    Article  CAS  Google Scholar 

  18. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  19. Gregoire FM. Adipocyte differentiation: From fibroblast to endocrine cell. Exp. Biol. Med. 226: 997–1002 (2001)

    CAS  Google Scholar 

  20. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 78: 783–809 (1998)

    CAS  Google Scholar 

  21. Krotkiewski M, Björntorp P, Sjöström L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Invest. 72: 1150–1162 (1983)

    Article  CAS  Google Scholar 

  22. Moon HS, Lee HG, Seo JH, Chung CS, Kim TG, Kim IY, Lim KW, Seo SJ, Choi YJ, Cho CS. Down-regulation of PPARγ2-induced adipogenesis by PEGylated conjugated linoleic acid as the pro-drug: Attenuation of lipid accumulation and reduction of apoptosis. Arch. Biochem. Biophys. 456: 19–29 (2006)

    Article  CAS  Google Scholar 

  23. Abe D, Saito T, Kubo Y, Nakamura Y, Sekiya K. A fraction of unripe kiwi fruit extract regulates adipocyte differentiation and function in 3T3-L1 cells. Biofactors 36: 52–59 (2010)

    CAS  Google Scholar 

  24. Lin J, Della-Fera MA, Baile CA. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes. Res. 13: 982–990 (2005)

    Article  CAS  Google Scholar 

  25. Hargrave KM, ChangLong L, Meyer BJ, Kachman SD, Hartzell DL, Della-Fera MA, Miner JL, Baile CA. Adipose depletion and apoptosis induced by trans-10, cis-12 conjugated linoleic acid in mice. Obes. Res. 10: 1284–1290 (2002)

    Article  CAS  Google Scholar 

  26. Kim HK, Nelson-Dooley C, Della-Fera MA, Yang JY, Zhang W, Duan J, Hartzell DL, Hamrick MW, Baile CA. Genistein decreases food intake, body weight, and fat pad weight, and causes adipose tissue apoptosis in ovariectomized female mice. J. Nutr. 136: 409–414 (2006)

    CAS  Google Scholar 

  27. Wu BT, Hung PF, Chen HC, Huang RN, Chang HH, Kao YH. The apoptotic effect of green tea (−)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Cdk2 pathway. J. Agr. Food Chem. 53: 5695–5701 (2005)

    Article  CAS  Google Scholar 

  28. Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother. Res. 22: 1367–1371 (2008)

    Article  CAS  Google Scholar 

  29. Faraj M, Havel PJ, Phélis S, Blank D, Sniderman AD, Cianflone K. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J. Clin. Endocr. Metab. 88: 1594–1602 (2003)

    Article  CAS  Google Scholar 

  30. Havel PJ. Update on adipocyte hormones: Regulation of energy balance and carbohy drate/lipid metabolism. Diabetes 53: S143–S151 (2004)

    Article  CAS  Google Scholar 

  31. Simons PJ, van den Pangaart PS, van Roomen CP, Aerts JM, Boon L. Cytokine-mediated modulation of leptin and adiponectin secretion during in vitro adipogenesis: Evidence that tumor necrosis factor-α- and interleukin-1β-treated human preadipocytes are potent leptin producers. Cytokine 32: 94–103 (2005)

    CAS  Google Scholar 

  32. Ahn IS, Do MS, Kim SO, Jung HS, Kim YI, Kim HJ, Park KY. Antiobesity effect of gochujang (Korean fermented red pepper paste) extract in 3T3-L1adipocytes. J. Med. Food 9: 15–21 (2006)

    Article  Google Scholar 

  33. Wang Y, Kim KA, Kim JH, Sul HS. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. J. Nutr. 136: 2953–2956 (2006)

    CAS  Google Scholar 

  34. Amri EZ, Bertrand B, Ailhaud G, Grimaldi P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449–1456 (1991)

    CAS  Google Scholar 

  35. Ong JM, Kirchgessner TG, Schotz MC, Kern PA. Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocytes. J. Biol. Chem. 263: 12933–12938 (1988)

    CAS  Google Scholar 

  36. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 14: 1293–1307 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Heon Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, Y.S., Jung, H.K., Cho, KH. et al. Anti-obesity effect of grape skin extract in 3T3-L1 adipocytes. Food Sci Biotechnol 20, 635–642 (2011). https://doi.org/10.1007/s10068-011-0090-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0090-x

Keywords

Navigation