Skip to main content
Log in

Effect of defatting and enzyme type on antioxidative activity of shrimp processing byproducts hydrolysate

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Shrimp processing byproducts (SPB) was digested by 6 proteases (trypsin, pepsin, neutrase, Protamex, Flavourzyme, and Alcalase) to produce antioxidative peptides. Both degree of hydrolysis (DH) and DPPH radical scavenging activity (DSA) of the Alcalase hydrolysate were the highest of all. The effect of defatting on DH and DSA of the Alcalase hydrolysate was significant. The DH decreased while the DSA increased after defatting of the byproducts. The antioxidative activity of Alcalase hydrolysate was also investigated using several in vitro assays, including DPPH, ABTS radical scavenging assays (ASA), reducing power assay, and chelating activity. The antioxidative activity of the hydrolysate was obviously concentration dependent. The SPB Alcalase hydrolysate exhibited notable DSA and ASA with the IC50 values of 500 and 7.4 μg/mL, respectively. And the hydrolysate showed 38.9% chelating activity at 120 μg/mL level. The SPB Alcalase hydrolysate was a potential source of natural antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stadtman ER. Protein oxidation and aging. Free Radical Res. 40: 1250–1258 (2006)

    Article  CAS  Google Scholar 

  2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B. 39: 44–84 (2007)

    Article  CAS  Google Scholar 

  3. Chen C, Pearson AM, Gray JI. Effects of synthetic antioxidants (BHA, BHT, and PG) on the mutagenicity of IQ-like compounds. Food Chem. 43: 177–183 (1992)

    Article  CAS  Google Scholar 

  4. Rajapakse N, Mendis E, Byun HG, Kim SK. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16: 562–569 (2005)

    Article  CAS  Google Scholar 

  5. Sheih IC, Wu TK, Fang TJ. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technol. 100: 3419–3425 (2009)

    Article  CAS  Google Scholar 

  6. Klompong V, Benjakul S, Kantachote D, Shahidi F. Comparative study on oxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. Int. J. Food Sci. Tech. 43: 1019–1026 (2008)

    Article  CAS  Google Scholar 

  7. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102: 1317–1327 (2007)

    Article  CAS  Google Scholar 

  8. Je JY, Qian ZJ, Byun HG, Kim SK. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 42: 840–846 (2007)

    Article  CAS  Google Scholar 

  9. Slizyte R, Mozuraityte R, Martez-Alvarez O, Falch E, Fouchereau-Peron M, Rustad T. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochem. 44: 668–677 (2009)

    Article  CAS  Google Scholar 

  10. Sachindra NM, Bhaskar N, Mahendrakar NS. Carotenoids in different body components of Indian shrimps. J. Sci. Food Agr. 85: 167–172 (2005)

    Article  CAS  Google Scholar 

  11. Kim JS, Shahidi F, Heu MS. Tenderization of meat by saltfermented sauce from shrimp processing byproducts. Food Chem. 93: 243–249 (2005)

    Article  CAS  Google Scholar 

  12. Destoumieux D, Munoz M, Bulet P, Bachère E. Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol. Life Sci. 57: 1260–1271 (2000)

    Article  CAS  Google Scholar 

  13. Li L, Wang JX, Zhao XF, Kang CJ, Liu N, Xiang JH, Li FH, Sueda S, Kondo H. High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expres. Purif. 39: 144–151 (2005)

    Article  CAS  Google Scholar 

  14. Cao W, Zhang C, Hong P, Ji H. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis. Food Chem. 109: 176–183 (2008)

    Article  CAS  Google Scholar 

  15. Balti R, Nedjar-Arroume N, Bougatef A, Guillochon D, Nasri M. Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Res. Int. 43: 1136–1143 (2010)

    Article  CAS  Google Scholar 

  16. Babu CM, Chakrabarti R, Surya KR. Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids. LWT-Food Sci. Technol. 41: 227–235 (2008)

    Article  CAS  Google Scholar 

  17. Binsan W, Benjakul S, Visessanguan W, Roytrakul S, Tanaka M, Kishimura H. Antioxidative activity of mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chem. 106: 185–193 (2008)

    Article  CAS  Google Scholar 

  18. Guerard F, Sumaya-Martinez MT, Laroque D, Chabeaud A, Dufossé L. Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochem. 42: 1486–1491 (2007)

    Article  CAS  Google Scholar 

  19. Izco JM, Torre P, Barcina Y. Ripening of Ossau-Iraty cheese: Determination of free amino acids by RP-HPLC and of total free amino acids by the TNBS method. Food Control 11: 7–11 (2000)

    Article  CAS  Google Scholar 

  20. AOAC. Official Method of Analysis. of AOAC Int. 16th ed. Method 991.19. Association of Official Analytical Chemistis, Arlington, VA, USA (1995)

    Google Scholar 

  21. Wu HC, Chen HM, Shiau CY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36: 949–957 (2003)

    Article  CAS  Google Scholar 

  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  23. Oyaiza M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. J. Nutr. 44: 307–315 (1986)

    Google Scholar 

  24. Dinis TC, Almeida LM, Madeira VM. Lipid peroxidation in sarcoplasmic reticulum membranes: Effect on functional and biophysical properties. Arch. Biochem. Biophys. 301: 256–264 (1993)

    Article  CAS  Google Scholar 

  25. Beaulieu L, Thibodeau J, Bryl P, Carbonneau M. Characterization of enzymatic hydrolyzed snow crab (Chionoecetes opilio) byproduct fractions: A source of high-valued biomolecules. Bioresource Technol. 100: 3332–3342 (2009)

    Article  CAS  Google Scholar 

  26. Bueno-Solano C, López-Cervantes J, Campas-Baypoli ON, Lauterio-García R, Adan-Bante NP, Sánchez-Machado DI. Chemical and biological characteristics of protein hydrolysates from fermented shrimp byproducts. Food Chem. 112: 671–675 (2009)

    Article  CAS  Google Scholar 

  27. Liu Q, Kong B, Xiong YL, Xia X. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118: 403–410 (2010)

    Article  CAS  Google Scholar 

  28. You L, Zhao M, Cui C, Zhao H, Yang B. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov. Food Sci. Emerg. 10: 235–240 (2009)

    Article  CAS  Google Scholar 

  29. Kristinsson HG, Rasco BA. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agr. Food Chem. 48: 657–666 (2000)

    Article  CAS  Google Scholar 

  30. Zhang J, Zhang H, Wang L, Guo X, Wang X, Yao H. Antioxidant activities of the rice endosperm protein hydrolysate: Identification of the active peptide. Eur. Food Res. Technol. 229: 709–719 (2009)

    Article  CAS  Google Scholar 

  31. Hoyle NT, Merrltt JH. Quality of fish protein hydrolysates from herring (Clupea harengus). J. Food Sci. 59: 76–79 (1994)

    Article  CAS  Google Scholar 

  32. Sakanaka S, Tachibana Y. Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem. 95: 243–249 (2006)

    Article  CAS  Google Scholar 

  33. Zhang SB, Wang Z, Xu SY. Antioxidant and antithrombotic activities of rapeseed peptides. J. Am. Oil Chem. Soc. 85: 521–527 (2008)

    Article  CAS  Google Scholar 

  34. Sachindra NM, Bhaskar N. In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresource Technol. 99: 9013–9016 (2008)

    Article  CAS  Google Scholar 

  35. Yamashoji S, Kajimoto G. Antioxidant effect of Gly-Gly-His on Cu (II)-catalyzed autoxidation and photosensitized oxidation of lipids. Agr. Biol. Chem. Tokyo 44: 2735–2736 (1980)

    CAS  Google Scholar 

  36. Gordon MH. The mechanism of antioxidant action in vitro. pp. 1–18. In: Food Antioxidants. Hudson BJ (ed). Elsevier Applied Science, London, UK (1990)

    Google Scholar 

  37. Roberts PR, Burney JD, Black KW, Zaloga GP. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion 60: 332–337 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Rong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, GR., Zhao, J. & Jiang, JX. Effect of defatting and enzyme type on antioxidative activity of shrimp processing byproducts hydrolysate. Food Sci Biotechnol 20, 651–657 (2011). https://doi.org/10.1007/s10068-011-0092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0092-8

Keywords

Navigation