Skip to main content
Log in

Effect of the degree of enzymatic hydrolysis on the physicochemical properties and in vitro digestibility of rice starch

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Rice starch was subjected to enzymatic treatment with pullulanase and the physicochemical properties of the modified rice starch were investigated as a function of the degree of hydrolysis which ranged from 0.9 to 10.2%. The enzymatic hydrolysis of rice starch caused a decrease in the fraction of rapidly digestible starch (RDS) (78.31→44.65%), whereas the levels of slowly digestible starch (SDS) (0.8→22.18%) and resistant starch (RS) (20.79→34.43%) increased, consequently reducing in vitro starch digestibility. In addition, the swelling factor of rice starch decreased with increasing enzyme concentration while an increase in its syneresis was observed. In rapid visco analyser (RVA) measurement, dramatic decreases in the peak viscosity (452.5→12.0 cp), breakdown (307.0→4.5 cp), and setback (207.0→3.0 cp) were observed in the enzyme-treated rice starch of which X-ray diffraction showed that there was the coexistence of A-and V-type crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33–S50 (1992)

    Google Scholar 

  2. Ludwig DS. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. J. Am. Med. Assoc. 287: 2414–2423 (2002)

    Article  CAS  Google Scholar 

  3. Chung HJ, Liu Q, Hoover R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible, and resistant starch levels in native and gelatinized corn, pea, and lentil starches. Carbohyd. Polym. 75: 436–447 (2009)

    Article  CAS  Google Scholar 

  4. Han JA, BeMiller JN. Preparation and physical characteristics of slowly digesting modified food starches. Carbohyd. Polym. 67: 366–374 (2007)

    Article  CAS  Google Scholar 

  5. Sajilta MG, Singhal RS, Kulkarni PR. Resistant starch-A review. Compr. Rev. Food Sci. 5: 1–17 (2006)

    Article  Google Scholar 

  6. Annison G, Topping DL. Nutrition role of resistant starch: Chemical structure vs. physiological function. Ann. Rev. Nut. 14: 297–320 (1994)

    Article  CAS  Google Scholar 

  7. Gonzalez-Soto RA, Mora-Escobedo R, Hernandez-Sanchez H, Sanchez-Rivera M, Bello-Perez LA. The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch. Food Res. Int. 40: 304–310 (2007)

    Article  CAS  Google Scholar 

  8. Leong YH, Karim AA, Norziah MH. Effect of pullulanase debranching of sago (Metroxylon sagu) starch at subgelatinization temperature on the yield of resistant starch. Starch/Stärke 59: 21–32 (2007)

    Article  CAS  Google Scholar 

  9. Berry CS. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. J. Cereal Sci. 4: 301–314 (1986)

    Article  CAS  Google Scholar 

  10. Song X, He G, Ruan H, Chen Q. Preparation and properties of octenyl succinic anhydride modified early Indica rice starch. Starch/Stärke 58: 109–117 (2006)

    Article  CAS  Google Scholar 

  11. Frei M, Siddhuraju P, Becker K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 83: 395–402 (2003)

    Article  CAS  Google Scholar 

  12. Rutenberg MW, Solarek D. Starch: Chemistry and Technology. Academic Press, Inc., New York, NY, USA. pp. 312–388 (1984)

    Google Scholar 

  13. Guraya HS, James C, Champagne ET. Effect of cooling, and freezing on the digestibility of debranched rice starch and physical properties of the resulting material. Starch/Stärke 53: 64–74 (2001)

    Article  CAS  Google Scholar 

  14. Guraya HS, James C, Champagne ET. Effect of enzyme concentration and storage temperature on the formation of slowly digestible starch from cooked debranched rice starch. Starch/Stärke 53: 131–139 (2001)

    Article  CAS  Google Scholar 

  15. Miao M, Jiang B, Zhang T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohyd. Polym. 76: 214–221 (2009)

    Article  CAS  Google Scholar 

  16. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substance. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  17. Robin JP, Mercier C, Charbonniere R, Guilbot A. Linterized starches gel filtration and enzymatic studies of insoluble residue from prolonged acid treatment of potato starch. Cereal Chem. 51: 389–406 (1974)

    CAS  Google Scholar 

  18. Morrison MR. Laignelet B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1: 9–20 (1983)

    Article  CAS  Google Scholar 

  19. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches I. effects of amylopectin, amylose, and lipids. Cereal Chem. 67: 551–557 (1990)

    CAS  Google Scholar 

  20. Jobling SA, Tayal RJA, Jeffcoat R, Schwall GP. Production of a freeze-thaw stable potato starch by antisense inhibition of three starch synthase genes. Nat. Biotechnol. 34: 695–703 (2002)

    Google Scholar 

  21. Hizukuri S, Takeda Y, Yasuda M. Multi-branched nature of amylose and the action of debranching enzymes. Carbohyd. Res. 94: 205–213 (1981)

    Article  CAS  Google Scholar 

  22. Edmonton TV, Saskatoon RSB. Enhancement of resistant starch (RS3) in amylomaize, barley, field pea, and lentil starches. Starch/Stärke 50: 286–291 (1998)

    Article  Google Scholar 

  23. Wong CW, Muhammad SKS, Dzulkifly MH, Saari N, Ghazali HM. Enzymatic production of linear long-chain dextrin from sago (Metroxylon sagu) starch. Food Chem. 100: 774–780 (2007)

    Article  CAS  Google Scholar 

  24. Sasaki T, Matsuki J. Effect of wheat structure on swelling power. Cereal Chem. 75: 525–529 (1998)

    Article  CAS  Google Scholar 

  25. Stone LA, Lorenz K. The starch of amaranths-physicochemical properties and functional characteristics. Starch/Stärke 36: 232–237 (1984)

    Article  CAS  Google Scholar 

  26. Zhou Y, Hoover R, Liu Q. Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches. Carbohyd. Polym. 57: 299–317 (2004)

    Article  CAS  Google Scholar 

  27. Wang YJ, Wang L. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohyd. Polym. 52: 207–217 (2003)

    CAS  Google Scholar 

  28. Hoover R, Roorke SC, Martin AM. Isolation and characterization of lima bean (Phaseolus lunatus) starch. J. Food Biochem. 15: 117–136 (1991)

    Article  CAS  Google Scholar 

  29. Park KH. Structured and modified starch for food industry-How far can microbial enzymes and transgenic plant cooperatively work with? Acta Aliment. Hung. 32: 3–5 (2003)

    Article  Google Scholar 

  30. Lee KY, Kim YR, Park KH, Lee HG. Effects of α-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohyd. Polym. 63: 347–354 (2006)

    Article  CAS  Google Scholar 

  31. Hagenimana A, Ding X, Fang T. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 43: 38–46 (2006)

    Article  CAS  Google Scholar 

  32. Hoover R, Vasanthan T. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohyd. Res. 252: 33–53 (1994)

    CAS  Google Scholar 

  33. Lee Y, Kim SH, Inglett GE. Effect of shortening replacement with oatrim on the physical and rheological properties of cakes. Cereal Chem. 82: 120–124 (2005)

    Article  CAS  Google Scholar 

  34. Pukkahutaa C, Shobsngobb S, Varavinita S. Effect of osmotic pressure on starch: New method of physical modification of starch. Starch/Stärke 58: 78–90 (2007)

    Article  Google Scholar 

  35. Kuakpetoon D, Wang Y-J. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohyd. Polym. 341: 1896–1915 (2001)

    Google Scholar 

  36. Zobel HF. Molecules to granules: A comprehensive starch review. Starch/Stärke 40: 40–44 (1988)

    Google Scholar 

  37. Shin SI, Choi HJ, Chung KM, Hamaker BR, Park KH, Moon TW. Slowly digestible starch from debranched waxy sorghum starch: Preparation and properties. Cereal Chem. 81: 404–408 (2004)

    Article  CAS  Google Scholar 

  38. Biliaderis CG, Galloway G. Crystalliztion behavior of amylose-V complexes: Structure-property relationship. Carbohyd. Res. 189: 31–48 (1989)

    Article  CAS  Google Scholar 

  39. Han XZ, Ao Z, Janaswamy S, Jane JL, Chandrasekaran R, Hamaker BR. Development of a low glycemic maize starch: Preparation and characterization. Biomacromolecules 7: 1162–1168 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.Y., Lee, S. & Lee, H.G. Effect of the degree of enzymatic hydrolysis on the physicochemical properties and in vitro digestibility of rice starch. Food Sci Biotechnol 19, 1333–1340 (2010). https://doi.org/10.1007/s10068-010-0190-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0190-z

Keywords

Navigation