Skip to main content
Log in

Dietary supplementation of onion inhibits diethylnitrosamine-induced rat hepatocellular carcinogenesis

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was investigated about the effect of onion (Allium cepa. Linn) on the chemical induction of preneoplastic lesions in rat liver. Male Sprague-Dawley rats were fed with control or onion powder diet for 9 weeks. Hepatocellular carcinogenesis was induced by a single intraperitoneal injection of diethylnitrosamine (DEN) (200 mg/kg BW) and 2/3 partial hepatectomy. Animals were sacrificed and livers were taken. Dietary supplementation of onion suppressed the formation of placental glutathione S-transferase (GST-P) positive foci in numbers (p<0.01) and area (p<0.05). Cytosolic activity of glutathione S-transferase (GST) was increased by DEN in the rats fed control diet. However, onion significantly decreased GST activity in DEN-treated rats. Glutathione peroxidase activity showed similar tendency to GST activity. Glutathione reductase activity and microsomal thiobarbituric acidreactive substance value, however, did not show noticeable difference among the groups. These results suggest that onion has anti-tumor activity that suppresses oxidative stress and the formation of preneoplastic foci in the rat liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lea MA, Randolph VM. Induction of histone acetylation in rat liver and hepatoma by organosulfur compounds including diallyl disulfide. Anticancer Res. 21: 2841–2845 (2001)

    CAS  Google Scholar 

  2. Kim JY, Kwon O. Garlic intake and cancer risk: An analysis using the Food and Drug Administration’s evidence-based review system for the scientific evaluation of health claims. Am. J. Clin. Nutr. 89: 257–264 (2009)

    Article  CAS  Google Scholar 

  3. Iciek MI, Kwiecie I, Wlodek L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen. 50: 247–265 (2009)

    Article  CAS  Google Scholar 

  4. Dini I, Tenore GC, Dini A. S-Alkenyl cysteine sulfoxide and its antioxidant properties from Allium cepa var. tropeana (red onion) seeds. J. Nat. Prod. 71: 2036–2037 (2008)

    Article  CAS  Google Scholar 

  5. Shirataki Y, Motohashi N, Tani S, Sunaga K, Sakagami H, Satoh K, Nakashima H, Kanamoto T, Wolfard K, Molnar J. Antioxidative activity of Allium victorialis L. extracts. Anticancer Res. 21: 3331–3339 (2001)

    CAS  Google Scholar 

  6. Benitez DA, Hermoso MA, Pozo-Guisado E, Fernandez-Salguero PM, Castellon EA. Regulation of cell survival by resveratrol involves inhibition of NFκB-regulated gene expression in prostate cancer cells. Prostate 69: 1045–1054 (2009)

    Article  CAS  Google Scholar 

  7. Bianchini F, Vainio H. Allium vegetables and organosulfur compounds: Do they help prevent cancer? Environ. Health Persp. 109: 893–902 (2001)

    Article  CAS  Google Scholar 

  8. Takezaki T, Gao CM, Ding JH, Liu TK, Li MS, Tajima K. Comparative study of lifestyles of residents in high and low risks areas for gastric cancer in Jiangsu province, China; with special reference to Allium vegetables. J. Epidemiol. 9: 297–305 (1999)

    CAS  Google Scholar 

  9. Kim JY, Kwon O. Garlic intake and cancer risk: An analysis using the Food and Drug Administration’s evidence-based review system for the scientific evaluation of health claims. Am. J. Clin. Nutr. 89: 257–264 (2009)

    Article  CAS  Google Scholar 

  10. Fleischauer AT, Arab L. Garlic and cancer: A critical review of the epidemiologic literature. J. Nutr. 131: 1032S–1040S (2001)

    CAS  Google Scholar 

  11. Hsing AW, Chokkalingam AP, Gao YT, Madigan MP, Deng J, Gridley G, Fraumeni JF. Allium vegetables and risk of prostate cancer: A population-based study. J. Natl. Cancer Inst. 94: 1648–1651 (2002)

    CAS  Google Scholar 

  12. Gao CM, Takezaki T, Ding JH, Li MS, Tajima K. Protective effect of Allium vegetables against both esophageal and stomach cancer: A simultaneous case-referent study of high-epidemic area in Jiangsu province, China. Gann 90: 614–621 (1999)

    CAS  Google Scholar 

  13. Challier B, Perarnau JM, Viel JF. Garlic, onion, and cereal fiber as protective factors for breast cancer: A French case-control study. Eur. J. Epidemiol. 14: 737–747 (1998)

    Article  CAS  Google Scholar 

  14. Dorant E, Brandt PA, Goldbohm RA. Allium vegetables consumption, garlic supplement intake, and female breast carcinoma incidence. Breast Cancer Res. Tr. 33: 163–170 (1995)

    Article  CAS  Google Scholar 

  15. Heo MY, Sohn SJ, Au WW. Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate. Mutat. Res. 488: 135–150 (2001)

    Article  CAS  Google Scholar 

  16. Ito N, Tsuda H, Tatematsu M, Inoue T, Tagawa Y, Aoki T, Uwagawa S, Kagawa M, Ogiso T, Masui T, Imaida K, Fukushima S, Asamato M. Enhancing effect of various hepatocarcinogens on induction of preneoplastic glutathione S-transferase placental form positive foci in rats-an approach for a new medium-term bioassay system. Carcinogenesis 9: 387–394 (1988)

    Article  CAS  Google Scholar 

  17. Hsu SM, Rain L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29: 577–580 (1981)

    CAS  Google Scholar 

  18. Graham RC, Karnowsky MJ. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14: 291–302 (1966)

    CAS  Google Scholar 

  19. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase; the first enzymatic steps in mercapturic acid formation. J. Biochem. 249: 7130–7139 (1974)

    CAS  Google Scholar 

  20. Tapple AL. Glutathione peroxidase and hydroperoxides. Methods Enzymol. 52: 506–513 (1978)

    Article  Google Scholar 

  21. Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biochem. 250: 5475–5480 (1975)

    CAS  Google Scholar 

  22. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 52: 302–310 (1978)

    Article  CAS  Google Scholar 

  23. Banginski ES, Foa PP, Zak B. Glucose-6-phophatase. Vol. 2, pp. 876–880. In: Methods of Enzymatic Analysis. Academic Press, New York, NY, USA (1974)

    Google Scholar 

  24. Lowry OH, Rosebrough NR, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J. Biochem. 93: 265–275 (1951)

    Google Scholar 

  25. Snedecor GW, Cochrane WG. Statistical Methods. 8th ed. Iowa State University Press, Ames, IA, USA. pp. 156–160 (1989)

    Google Scholar 

  26. Morimura S, Susuki T, Hochi S, Yuki A, Nomura K, Kitagawa T, Nagatsu I, Imagawa M, Muramtsu M. Trans-activation of glutathione transferase P gene during chemical hepatocarcinogenesis of the rat. P. Natl. Acad. Sci. USA 90: 2065–2068 (1993)

    Article  CAS  Google Scholar 

  27. Tsuda H, Fukushima S, Wanibuchi H, Morimura K, Nakae D, Imaida K, Tatematsu M, Hirose M, Wakabayashi K, Moore MA. Value of GST-P-positive preneoplastic hepatic foci in dose-response studies of hepatocarcinogenesis: Evidence for practical thresholds with both genotoxic and nongenotoxic carcinogens. A review of recent work. Toxicol. Pathol. 31: 80–86 (2003)

    CAS  Google Scholar 

  28. Lohitnavy M, Lu Y, Lohitnavy O, Chubb LS, Hirono S, Yang RSH. A possible role of multidrug resistance-associated protein 2 (Mrp2) in hepatic excretion of PCB126, an environmental contaminant: PBPK/PD modeling. Toxicol. Sci. 104: 27–39 (2008)

    Article  CAS  Google Scholar 

  29. Ito N, Tamano S, Shirai T. A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals. Cancer Sci. 94: 3–8 (2003)

    Article  CAS  Google Scholar 

  30. Takahashi M, Shibutani M, Woo G-H, Inoue K, Fujimoto H, Igarashi K, Kanno J, Hirose M, Nishikawa A. Cellular distributions of molecules with altered expression specific to the tumor promotion process from the early stage in a rat two-stage hepatocarcinogenesis model. Carcinogenesis 29: 2218–2226 (2008)

    Article  CAS  Google Scholar 

  31. Yokoe H, Nomura H, Yamano Y, Fushimi K, Sakamoto Y, Ogawara K, Shiiba M, Bukawa H, Uzawa K, Takiguchi Y, Tanzawa H. Characterization of intracellular superoxide dismutase alterations in premalignant and malignant lesions of the oral cavity: Correlation with lymph node metastasis. J. Cancer Res. Clin. 135: 1625–1633 (2009)

    Article  CAS  Google Scholar 

  32. Galaris D, Skidad V, Barbouti A. Redox signaling and cancer: The role of “labile” iron. Cancer Lett. 266: 21–29 (2008)

    Article  CAS  Google Scholar 

  33. Cruzan G, Bus J, Banton M, Gingell R, Carlson G. Mouse specific lung tumors from CYP2F2-mediated cytotoxic metabolism: An endpoint/toxic response where data from multiple chemicals converge to support a mode of action. Regul. Toxicol. Pharm. 55: 205–218 (2009)

    Article  CAS  Google Scholar 

  34. Nishimura J, Dewa Y, Okamura T, Jin M, Saegusa Y, Kawai M, Umemura T, Shibutani M, Mitsumori K. Role of Nrf2 and oxidative stress on fenofibrate-induced hepatocarcinogenesis in rat. Toxicol. Sci. 106: 339–349 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-A Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, MA., Kim, HA. Dietary supplementation of onion inhibits diethylnitrosamine-induced rat hepatocellular carcinogenesis. Food Sci Biotechnol 19, 77–82 (2010). https://doi.org/10.1007/s10068-010-0011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0011-4

Keywords

Navigation