Skip to main content
Log in

CD8 T cell-derived perforin regulates macrophage-mediated inflammation in a murine model of gout

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Gout is characterized by hyperuricemia and recurrent inflammatory episodes caused by intra-articular crystal deposition of monosodium urate (MSU). There is a clear relationship between gout and metabolic syndrome. Recent evidence indicates that perforin plays a role in regulating glucose homeostasis and provides protection in diet-induced non-alcoholic steatohepatitis models. However, the impact of perforin on immune inflammation in gout remains unclear.

Methods

We induced acute gout models in both wild-type (WT) mice and Prf1null mice by administering intra-articular injections of MSU crystals. We compared the ankle joint swelling and the histological score between the two groups. Furthermore, we investigated underlying mechanisms through in vitro co-culture experiments involving CD8 T cells and macrophages.

Results

In this study, Prf1null mice showed significantly more pronounced ankle swelling with increased inflammatory cell infiltrations compared with WT mice 24 h after local MSU injection. Moreover, MSU-induced Prf1null mice exhibited increased accumulation of CD8 T cells but not NK cells. Perforin-deficient CD8 T cells displayed reduced cytotoxicity towards bone marrow–derived M0 and M1 macrophages and promoted TNF-α secretion from macrophage.

Conclusions

Perforin from CD8 T cells limits joint inflammation in mice with acute gout by downregulating macrophage-mediated inflammation.

Key Points

• Perforin deficiency increased swelling in the ankle joints of mice upon MSU injection.

• Perforin deficiency is associated with increased immune cell recruitment and severe joint damage in gout.

• Perforin regulated CD8 T cell accumulation in gout and promoted CD8 T cell cytotoxicity towards M0 and M1 macrophages.

• CD8 T cell-derived perforin regulated pro-inflammatory cytokine secretion of macrophage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available upon reasonable request. Requests for data should be directed to the principal investigator, Dr. Yanying Liu (Liuyanying6850@126.com). Additionally, one study author has full access to all the data in the study and takes responsibility for its integrity and the data analysis.

References

  1. Mikuls TR (2022) Gout. N Engl J Med 387(20):1877–87

    Article  PubMed  Google Scholar 

  2. Liu YR, Wang JQ, Li J (2023) Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol 14:1137822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abhishek A, Roddy E, Doherty M (2017) Gout - a guide for the general and acute physicians. Clin Med (Lond) 17(1):54–59

    Article  PubMed  Google Scholar 

  4. Shi C, Zhou Z, Chi X, Xiu S, Yi C, Jiang Z, Chen R, Zhang L, Liu Z (2023) Recent advances in gout drugs. Eur J Med Chem 245(Pt 1):114890

    Article  CAS  PubMed  Google Scholar 

  5. Terkeltaub R (2017) What makes gouty inflammation so variable? BMC Med 15(1):158

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drivelegka P, Jacobsson LTH, Lindstrom U, Bengtsson K, Dehlin M (2023) Incident gout and risk of first-time acute coronary syndrome: a prospective, population-based cohort study in Sweden. Arthritis Care Res (Hoboken) 75(6):1292–1299

    Article  PubMed  Google Scholar 

  7. Oka P, Chong WM, Ng DX, Aau WK, Tan NC (2023) Epidemiology and risk factors associated with gout control among adult Asians: a real-world retrospective cohort study. Front Med (Lausanne) 10:1253839

    Article  PubMed  Google Scholar 

  8. Alduraibi FK, Saleem M, Ricart K, Patel RP, Szalai AJ, Singh JA (2023) Clustering patients with gout based on comorbidities and biomarkers: a cross-sectional study. J Rheumatol 50(6):817–826

    Article  CAS  PubMed  Google Scholar 

  9. Feldman N, Rotter-Maskowitz A, Okun E (2015) DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev 24(Pt A):29–39

    Article  CAS  PubMed  Google Scholar 

  10. Revelo XS, Tsai S, Lei H, Luck H, Ghazarian M, Tsui H, Shi SY, Schroer S, Luk CT, Lin GH, Mak TW, Woo M, Winer S, Winer DA (2015) Perforin is a novel immune regulator of obesity-related insulin resistance. Diabetes 64(1):90–103

    Article  CAS  PubMed  Google Scholar 

  11. Wang T, Sun G, Wang Y, Li S, Zhao X, Zhang C, Jin H, Tian D, Liu K, Shi W, Tian Y, Zhang D (2019) The immunoregulatory effects of CD8 T-cell-derived perforin on diet-induced nonalcoholic steatohepatitis. FASEB J 33(7):8490–8503

    Article  CAS  PubMed  Google Scholar 

  12. Queiroz-Junior CM, Madeira MF, Coelho FM, Costa VV, Bessoni RL, Sousa LF, Garlet GP, Souza Dda G, Teixeira MM, Silva TA (2011) Experimental arthritis triggers periodontal disease in mice: involvement of TNF-alpha and the oral microbiota. J Immunol 187(7):3821–3830

    Article  CAS  PubMed  Google Scholar 

  13. Wang B, Chen S, Qian H, Zheng Q, Chen R, Liu Y, Shi G (2020) Role of T cells in the pathogenesis and treatment of gout. Int Immunopharmacol 88:106877

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Wu M, Yang J, Wang J, Qiao Y, Li X (2017) The immunological basis in the pathogenesis of gout. Iran J Immunol 14(2):90–98

    PubMed  Google Scholar 

  15. Badovinac VP, Hamilton SE, Harty JT (2003) Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity 18(4):463–474

    Article  CAS  PubMed  Google Scholar 

  16. Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15(6):388–400

    Article  CAS  PubMed  Google Scholar 

  17. Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170(4):2221–2228

    Article  CAS  PubMed  Google Scholar 

  18. Blanco P, Pitard V, Viallard JF, Taupin JL, Pellegrin JL, Moreau JF (2005) Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 52(1):201–211

    Article  CAS  PubMed  Google Scholar 

  19. Janka GE (2012) Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med 63:233–246

    Article  CAS  PubMed  Google Scholar 

  20. Zhong L, Li S, Wen Y, Zheng J, Liu F, Cao D, Liu Y (2020) Expansion of polymorphonuclear myeloid-derived suppressor cells in patients with gout. Front Immunol 11:567783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alivernini S, MacDonald L, Elmesmari A, Finlay S, Tolusso B, Gigante MR, Petricca L, Di Mario C, Bui L, Perniola S, Attar M, Gessi M, Fedele AL, Chilaka S, Somma D, Sansom SN, Filer A, McSharry C, Millar NL, Kirschner K, Nerviani A, Lewis MJ, Pitzalis C, Clark AR, Ferraccioli G, Udalova I, Buckley CD, Gremese E, McInnes IB, Otto TD, Kurowska-Stolarska M (2020) Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat Med 26(8):1295–1306

    Article  CAS  PubMed  Google Scholar 

  22. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, Xue Y, He D (2022) Inflammatory response to regulated cell death in gout and its functional implications. Front Immunol 13:888306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amaral FA, Bastos LF, Oliveira TH, Dias AC, Oliveira VL, Tavares LD, Costa VV, Galvao I, Soriani FM, Szymkowski DE, Ryffel B, Souza DG, Teixeira MM (2016) Transmembrane TNF-alpha is sufficient for articular inflammation and hypernociception in a mouse model of gout. Eur J Immunol 46(1):204–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yanying Liu and Tianqi Wang contributed to study conception and design. All authors contributed to experimental studies. Yanying Liu and Tianqi Wang contributed to analysis of data and drafting the manuscript. All authors had read and approved the final version to be published.

Corresponding author

Correspondence to Yanying Liu.

Ethics declarations

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, C., Zhou, M. et al. CD8 T cell-derived perforin regulates macrophage-mediated inflammation in a murine model of gout. Clin Rheumatol (2024). https://doi.org/10.1007/s10067-024-06964-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10067-024-06964-x

Keywords

Navigation