Skip to main content
Log in

Gout: a disease involved with complicated immunoinflammatory responses: a narrative review

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Gout is a disease with acute and/or chronic inflammation and tissue damage induced by the precipitation of monosodium urate crystal (MSU) crystals in bone joints, kidneys, and subcutaneous sites. In recent years, with the continuous research on gout animal models and patient clinical investigations, the mechanism of inflammation activation of gout has been further discovered. Studies have shown that pro-inflammatory factors such as interleukin (IL)-1β, IL-8 and IL-17, NLRP3 inflammasome, and tumor necrosis factor alpha (TNF-α), anti-inflammatory factors such as IL-10, IL-37 are all involved in the MSU-induced gout inflammatory process. And the immune cells in gout, including neutrophils, monocytes/macrophages, and lymphocytes, all play important roles in the pathogenesis of gout. In this review, we mainly emphasize the understanding of various cytokines, inflammasome, and immune cells involved in the onset of gout, in order to provide a systematic and theoretical basis for the novel exploration of inflammatory therapeutic targets for gout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASC:

apoptosis-associated speck-like protein

AGA:

acute gouty arthritis

ATP:

adenosine triphosphate;

CAM-1:

cellular adhesion molecule 1

CIA:

collagen arthritis

CLIC:

intracellular chloride channel protein

DAMP:

dangerous-associated molecular patterns

GM-CSF:

granulocyte-macrophage stimulating factor

HC:

healthy control

IL:

interleukin

LRR:

leucine-rich repeat domain

LPS :

bacterial lipopolysaccharide

MAVS:

mitochondrial antiviral signaling protein

MSU:

monosodium urate monohydrate

MIP-2:

macrophage inflammatory protein 2

Mfn2:

Mitochondrial fusion protein 2

NF-κB:

activate nuclear transcription factor

NLR:

NOD-like receptors

NAGA:

non-acute gouty arthritis

PRR:

pattern recognition receptor

PAMP:

pathogen-associated molecular patterns

PYD:

pyrin domain

P2X7:

P2X purine receptor 7

RANKL :

NF-κΒ ligands

ROS:

active oxygen

SOCS3:

signal transduction inhibitor 3

TGF-β1 :

transforming growth factor-β1

TNF-α:

tumor necrosis factor alpha

TLR:

Toll-like receptor

References

  1. Dalbeth N, Phipps-Green A, Frampton C, Neogi T, Taylor WJ, Merriman TR (2018) Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann Rheum Dis 77(7):1048–1052

    PubMed  CAS  Google Scholar 

  2. Dalbeth N, House ME, Aati O et al (2015) Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis 74:908–911

    PubMed  Google Scholar 

  3. So AK, Martinon F (2017) Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13(11):639–647

    PubMed  CAS  Google Scholar 

  4. Scott P, Ma H, Viriyakosol S, Terkeltaub R, Liu-Bryan R (2006) Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 177(9):6370–6378

    PubMed  CAS  Google Scholar 

  5. Barbero F, Russo L, Vitali M, Piella J, Salvo I, Borrajo ML, Busquets-Fité M, Grandori R, Bastús NG, Casals E, Puntes V (2017) Formation of the protein corona: the Interface between nanoparticles and the immune system. Semin Immunol 34:52–60

    PubMed  CAS  Google Scholar 

  6. Pascual E (1994) Hyperuricemia and gout. Curr Opin Rheumatol 6(4):454–458

    PubMed  CAS  Google Scholar 

  7. Renaudin F, Sarda S, Campillo-Gimenez L, Séverac C, Léger T, Charvillat C, Rey C, Lioté F, Camadro JM, Ea HK, Combes C (2019) Adsorption of proteins on m-CPPD and urate crystals inhibits crystal-induced cell responses: study on albumin-crystal interaction. J Funct Biomater 10(2):18

    PubMed Central  CAS  Google Scholar 

  8. Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1β and IL-18 secretion in an autocrine way. Proc Natl Acad Sci U S A 105:8067–8072

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Scanu A, Luisetto R, Oliviero F, Gruaz L, Sfriso P, Burger D, Punzi L (2015) High-density lipoproteins inhibit urate crystal-induced inflammation in mice. Ann Rheum Dis 74:587–594

    PubMed  CAS  Google Scholar 

  10. Rock KL, Kataoka H, Lai JJ (2013) Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol 9(1):13–23

    PubMed  CAS  Google Scholar 

  11. Joosten LA, Abdollahi-Roodsaz S, Dinarello CA et al (2016) Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol 12(6):344–357

    PubMed  CAS  Google Scholar 

  12. Narayanan KB, Park HH (2015) Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 20(2):196–209

    PubMed  CAS  Google Scholar 

  13. Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R (2005) Innate immunity conferred by toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 52(9):2936–2946

    PubMed  CAS  Google Scholar 

  14. Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, Akira S, Rock KL (2006) MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116(8):2262–2271

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Qi W, Cheng X-S (2015) Research advances in NLRP3 inflammasome. Basic Clin Med 15(1):117–121

    Google Scholar 

  16. Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265(1):35–52

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Samways DS, Li Z, Egan TM (2014) Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 8:6

    PubMed  PubMed Central  Google Scholar 

  18. Di A, Xiong S, Ye Z et al (2018) The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity 49(1):56–65.e4

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126(Pt 13):2903–2913

    PubMed  CAS  Google Scholar 

  20. Laudisi F, Spreafico R, Evrard M, Hughes TR, Mandriani B, Kandasamy M, Morgan BP, Sivasankar B, Mortellaro A (2013) Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J Immunol 191(3):1006–1010

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Asgari E, Le Friec G, Yamamoto H et al (2013) C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood. 122(20):3473–3481

    PubMed  CAS  Google Scholar 

  22. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38(6):1142–1153

    PubMed  PubMed Central  Google Scholar 

  23. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AAB, Cooper MA, Graf T, Hornung V (2016) Human monocytes engage an alternative inflammasome pathway. Immunity. 44(4):833–846

    PubMed  CAS  Google Scholar 

  24. Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J, Dittlein DC, Shi H, Gorka O, Koenig PA, Fromm S, Magnani G, Ćiković T, Hartjes L, Smollich J, Robertson AAB, Cooper MA, Schmidt-Supprian M, Schuster M, Schroder K, Broz P, Traidl-Hoffmann C, Beutler B, Kuster B, Ruland J, Schneider S, Perocchi F, Groß O (2016) K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 45(4):761–773

    PubMed  Google Scholar 

  25. Courbet A, Bec N, Constant C, Larroque C, Pugniere M, el Messaoudi S, Zghaib Z, Khier S, Deleuze-Masquefa C, Gattacceca F (2017) Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One 12(8):e0182022

    PubMed  PubMed Central  Google Scholar 

  26. Zghaib Z, Guichou JF, Vappiani J, Bec N, Hadj-Kaddour K, Vincent LA, Paniagua-Gayraud S, Larroque C, Moarbess G, Cuq P, Kassab I, Deleuze-Masquéfa C, Diab-Assaf M, Bonnet PA (2016) New imidazoquinoxaline derivatives: synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships. Bioorg Med Chem 24(11):2433–2440

    PubMed  CAS  Google Scholar 

  27. Haneklaus M, O’Neill LA, Coll RC (2013) Modulatory mechanismscontrolling the NLRP3 inflammasome in inflammation: recent developments. Curr Opin Immunol 25(1):40–45

    PubMed  CAS  Google Scholar 

  28. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140

    PubMed  CAS  Google Scholar 

  29. Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature. 564(7734):71–76

    PubMed  CAS  Google Scholar 

  30. Martin WJ, Walton M, Harper J (2009) Resident macrophages initiating and driving inflammation in a monosodium Urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum 60(1):281–289

    PubMed  Google Scholar 

  31. Hoffman HM, Scott P, Mueller JL, Misaghi A, Stevens S, Yancopoulos GD, Murphy A, Valenzuela DM, Liu-Bryan R (2010) Role of the leucine-richrepeat domain of cryopyrin/NLRP3 in monosodium urate crystai-induced inflammation in mice. Arthritis Rheum 62(7):2170–2179

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 440(7081):237–241

    PubMed  CAS  Google Scholar 

  33. Pisetsky DS, Ward MM (2012) Advances in the treatment of inflammatory arthritis. Best Pract Res Clin Rheumatol 26(2):251–261

    PubMed  PubMed Central  Google Scholar 

  34. Bauernfeind F, Niepmann S, Knolle PA, Hornung V (2016) Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances. J Immunol 197(7):2900–2908

    PubMed  CAS  Google Scholar 

  35. Yokose K, Sato S, Asano T, Yashiro M, Kobayashi H, Watanabe H, Suzuki E, Sato C, Kozuru H, Yatsuhashi H, Migita K (2018) TNF-α potentiates uric acid-induced interleukin-1β (IL-1β) secretion in human neutrophils. Mod Rheumatol 28(3):513–517

    PubMed  CAS  Google Scholar 

  36. Amaral FA, Bastos LF, Oliveira TH et al (2016) Transmembrane TNF-α is sufficient for articular inflammation and hypernociception in a mouse model of gout. Eur J Immunol 46(1):204–211

    PubMed  CAS  Google Scholar 

  37. Cabrera SM, Wang X, Chen YG, Jia S, Kaldunski ML, Greenbaum CJ, the Type 1 Diabetes TrialNet Canakinumab Study Group, Mandrup-Poulsen T, the AIDA Study Group, Hessner MJ (2016) Interleukin-1 antagonism moderates the inflammatory state associated with type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol 46(4):1030–1046

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Busso N, So A (2010) Mechanisms of inflammation in gout. Arthritis Res Ther 12(2):206

    PubMed  PubMed Central  Google Scholar 

  39. Sutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Janssen CA, Oude Voshaar MAH, Vonkeman HE, Jansen TLTA, Janssen M, Kok MR, Radovits B, van Durme C, Baan H, van de Laar MAFJ (2019) Anakinra for the treatment of acute gout flares: a randomized, double-blind, placebo-controlled, active-comparator, non-inferiority trial. Rheumatology (Oxford) 58:1344–1352

    Google Scholar 

  41. Kim KW, Kim BM, Lee KA et al (2019) Reciprocal interaction between macrophage migration inhibitory factor and interleukin-8 in gout. Clin Exp Rheumatol 37(2):270–278

    PubMed  Google Scholar 

  42. Liu R, Aupperle K, Terkeltaub R (2001) Src family protein tyrosine kinase signaling mediates monosodium urate crystal-induced IL-8 expression by monocytic THP-1 cells. J Leukoc Biol 70(6):961–968

    PubMed  CAS  Google Scholar 

  43. Liu R, O’Connell M, Johnson K et al (2000) Extracellular signal-regulated kinase 1/extracellular signal-regulated kinase 2 mitogen-activated protein kinase signaling and activation of activator protein 1 and nuclear factor kappaB transcription factors play central roles in interleukin-8 expression stimulated by monosodium urate monohydrate and calcium pyrophosphate crystals in monocytic cells. Arthritis Rheum 43(5):1145–1155

    PubMed  CAS  Google Scholar 

  44. Conforti-Andreoni C, Spreafico R, Qian HL, Riteau N, Ryffel B, Ricciardi-Castagnoli P, Mortellaro A (2011) Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18. J Immunol 187(11):5842–5850

    PubMed  CAS  Google Scholar 

  45. Mills KH, Dungan LS, Jones SA et al (2013) The role of inflammasome-derived IL-1 in driving IL-17 responses. J Leukoc Biol 93(4):489–497

    PubMed  CAS  Google Scholar 

  46. Liu Y, Zhao Q, Yin Y, McNutt MA, Zhang T, Cao Y (2018) Serum levels of IL-17 are elevated in patients with acute gouty arthritis. Biochem Biophys Res Commun 497(3):897–902

    PubMed  CAS  Google Scholar 

  47. Johnson JL, Jones MB, Cobb BA (2018) Polysaccharide-experienced effector T cells induce IL-10 in FoxP3+ regulatory T cells to prevent pulmonary inflammation. Glycobiology. 28(1):50–58

    PubMed  CAS  Google Scholar 

  48. Chen S, Chen B, Wen Z, Huang Z, Ye L (2017) IL-33/ST2-mediated inflammation in macrophages is directly abrogated by IL-10 during rheumatoid arthritis. Oncotarget. 8(20):32407–32418

    PubMed  PubMed Central  Google Scholar 

  49. Chen YH, Hsieh SC, Chen WY, Li KJ, Wu CH, Wu PC, Tsai CY, Yu CL (2011) Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGF-β1, IL-10 and soluble TNF receptors and the intracellular cytoldne negative regulators CIS and SOCS3. Ann Rheum Dis 70(9):1655–1663

    PubMed  CAS  Google Scholar 

  50. Schreiber S, Heinig T, Thiele HG, Raedler A (1995) Immuno-regulatory role of interleukin-10 in patients with inflammatory bowel disease. Gastroenterology. 108(5):1434–1444

    PubMed  CAS  Google Scholar 

  51. Zhuang X, Wu B, Li J, Shi H, Jin B, Luo X (2017) The emerging role of interleukin-37 in cardiovascular diseases. Immun Inflamm Dis 5(3):373–379

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Eisenmesser EZ, Gottschlich A, Redzic JS, Paukovich N, Nix JC, Azam T, Zhang L, Zhao R, Kieft JS, The E, Meng X, Dinarello CA (2019) Interleukin-37 monomer is the active form for reducing innate immunity. Proc Natl Acad Sci U S A 116(12):5514–5522

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Nold MF, Nold-Petty CA, Zepp JA et al (2010) IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 11(11):1014–1022

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Liu L, Xue Y, Zhu Y, Xuan D, Yang X, Liang M, Wang J, Zhu X, Zhang J, Zou H (2016) Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout. Arthritis Res Ther 18(1):268

    PubMed  PubMed Central  Google Scholar 

  55. Zeng M, Dang W, Chen B, Qing Y, Xie W, Zhao M, Zhou J (2016) IL-37 inhibits the production of proinflammatory cytokines in MSU crystal-induced inflammatory response. Clin Rheumatol 35:2251–2258

    PubMed  Google Scholar 

  56. Alvarez-Soria MA, Herrero-Beaumont G, Sánchez-Pernaute O et al (2008) Diacerein has a weak effect on the catabolic pathway of human osteoarthritis synovial fibroblast—comparison to its effects on osteoarthritic chondrocytes. Rheumatology(Oxford). 47(5):627–633

    PubMed  CAS  Google Scholar 

  57. Martin WJ, Shaw O, Liu X, Steiger S, Harper JL (2011) Monosodium urate monohydrate crystal-recruited noninflammatory monocytes differentiate into M1-like proinflammatory macrophages in a peritoneal murine model of gout. Arthritis Rheum 63:1322–1332

    PubMed  CAS  Google Scholar 

  58. Luo C (2015) Distinct impact of uric acid crystals and high uric acid on human monocytes/macrophages THP-1. Shantou University R589.7: 1–77

  59. Yang H, Yang X, Yufeng Q et al (2018) Study on the expression and significance of Th1/Th2 cells in the blood of patients with primary gouty arthritis. Chin J Rheumatol 22(11):731–736

    Google Scholar 

  60. Yang H, Yang X, Xiaowu Z et al (2016) Role of Thl7/Treg cell balance in the pathogenesis of primary gout arthritis. Chin J Rheumatol 20(8):520–525

    Google Scholar 

  61. Lee SJ, Nam KI, Jin HM, Cho YN, Lee SE, Kim TJ, Lee SS, Kee SJ, Lee KB, Kim N, Park YW (2011) Bone destruction by receptor activator of nuclear factor kappaΒ ligand-expressing T cells in chronic gouty arthritis. Arthritis Res Ther 13(5):R164

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Luo CY, Wang L, Sun C, Li DJ (2011) Estrogen enhances the functions of CD4(+)CD25(+) Foxp3(+) regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol 8(1):50–58

    PubMed  CAS  Google Scholar 

  63. Scanu A, Oliviero F, Ramonda R, Frallonardo P, Dayer JM, Punzi L (2012) Cytokine levels in human synovial fluid during the different stages of acute gout: role of transforming growth factor β1 in the resolution phase. Ann Rheum Dis 71(4):621–624

    PubMed  CAS  Google Scholar 

  64. Satoh T, Otsuka A, Contassot E, French LE (2015) The inflammasome and IL-1β: implications for the treatment of inflammatory diseases. Immunotherapy. 7(3):243–254

    PubMed  CAS  Google Scholar 

  65. Mokuda S, Kanno M, Takasugi K et al (2014) Tocilizumab improved clinical symptoms of a patient with systemic tophaceous gout who had symmetric polyarthritis and fever: an alternative treatment by blockade of interleukin-6 signaling. SAGE Open Med Case Rep 2:2050313X13519774

    PubMed  PubMed Central  Google Scholar 

  66. Yang CS, Kim JJ, Kim TS, Lee PY, Kim SY, Lee HM, Shin DM, Nguyen LT, Lee MS, Jin HS, Kim KK, Lee CH, Kim MH, Park SG, Kim JM, Choi HS, Jo EK (2015) Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nat Commun 6:6115

    PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81270577), the Science and Technology Innovation Foundation of Shenzhen, China (No. JCYJ20160427191026117), the Science and Technology Innovation Foundation of Baoan, Shenzhen, China (No. 2018JD237, No. 2016CX191), and the Construction Units of Key Specialties in Clinical Medicine, Baoan District, Shenzhen, China (No. 8, 214-2018, Health Commission of Baoan, Shenzhen City).

Author information

Authors and Affiliations

Authors

Contributions

Literature review: Meimei Wu and Chengshan Guo; Drafting of manuscript: Meimei Wu, Ye Tian, and Qianqian Wang. Revision of manuscript: Chengshan Guo and Meimei Wu. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Chengshan Guo.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Tian, Y., Wang, Q. et al. Gout: a disease involved with complicated immunoinflammatory responses: a narrative review. Clin Rheumatol 39, 2849–2859 (2020). https://doi.org/10.1007/s10067-020-05090-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05090-8

Keywords

Navigation