Skip to main content

Advertisement

Log in

Identification of EPSTI1 as a new potential biomarker for SLE based on GEO database

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous. The aim of this study is to find the key genes in peripheral blood mononuclear cells (PBMCs) of SLE patients and to provide a new direction for the diagnosis and treatment of lupus.

Methods

GSE121239, GSE50772, GSE81622, and GSE144390 mRNA expression profiles were obtained from the website of Gene Expression Omnibus (GEO), and differential expressed genes (DEGs) analysis was performed by R. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate signaling pathways for the DEGs. Real-time qPCR (RT-qPCR) was used to verify the key gene EPSTI1 in PBMCs of SLE patients. Finally, the correlation analysis and ROC curve analysis of EPSTI1 for SLE were performed.

Results

A total of 12 upregulated DEGs were identified, including MMP8, MX1, IFI44, EPSTI1, OAS1, OAS3, HERC5, IFIT1, RSAD2, USP18, IFI44L, and IFI27. GO and KEGG pathway enrichment analysis showed that those DEGs were mainly concentrated in the response to virus and IFN signaling pathways. Real-time qPCR (RT-qPCR) revealed that EPSTI1 was increased in PBMCs of SLE. EPSTI1 was positively correlated with SLEDAI score in SLE patients. Besides, EPSTI1 was positively correlated with T cell activation- or differentiation-associated genes (BCL6 and RORC). Furthermore, ROC analyses proved EPSTI1 may have diagnostic value for SLE.

Conclusion

Together, EPSTI1 was found to be a potential biomarker for SLE, closely related to T cell immune imbalance.

Key Points

EPSTI1 expression was significantly increased in PBMCs of SLE patients.

• EPSTI1 was positively correlated with disease activity and T cell activation- or differentiation-associated genes in SLE patients.

• EPSTI1 might have a good diagnostic value for SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study is available from GSE121239, GSE50772, GSE81622, and GSE144390.

References

  1. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121. https://doi.org/10.1056/NEJMra1100359

    Article  CAS  PubMed  Google Scholar 

  2. Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY et al (2021) Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol 17(9):515–532. https://doi.org/10.1038/s41584-021-00668-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gensous N, Boizard-Moracchini A, Lazaro E, Richez C, Blanco P (2021) Update on the cellular pathogenesis of lupus. Curr Opin Rheumatol 33(2):190–196. https://doi.org/10.1097/BOR.0000000000000775

    Article  CAS  PubMed  Google Scholar 

  4. Pan L, Lu MP, Wang JH, Xu M, Yang SR (2020) Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr 16(1):19–30. https://doi.org/10.1007/s12519-019-00229-3

    Article  PubMed  Google Scholar 

  5. Li H, Boulougoura A, Endo Y, Tsokos GC (2022) Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 132:102870. https://doi.org/10.1016/j.jaut.2022.102870

    Article  CAS  PubMed  Google Scholar 

  6. Mirlekar B (2020) Co-expression of master transcription factors determines CD4(+) T cell plasticity and functions in auto-inflammatory diseases. Immunol Lett 222:58–66. https://doi.org/10.1016/j.imlet.2020.03.007

    Article  CAS  PubMed  Google Scholar 

  7. Dhume K, Kaye B, McKinstry KK (2022) Regulation of CD4 T cell responses by the transcription factor Eomesodermin. Biomolecules. 12(11):1549. https://doi.org/10.3390/biom12111549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615. https://doi.org/10.1073/pnas.0337679100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723. https://doi.org/10.1084/jem.20021553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ronnblom L, Leonard D (2019) Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med 6(1):e000270. https://doi.org/10.1136/lupus-2018-000270

    Article  PubMed  PubMed Central  Google Scholar 

  11. Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB (2020) Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol 67:87–94. https://doi.org/10.1016/j.coi.2020.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang J, Zhao M, Chang C, Wu H, Lu Q (2020) Type I interferons in the pathogenesis and treatment of autoimmune diseases. Clin Rev Allergy Immunol 59(2):248–272. https://doi.org/10.1007/s12016-020-08798-2

    Article  CAS  PubMed  Google Scholar 

  13. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA et al (2017) 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22. https://doi.org/10.1016/j.ajhg.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng Y, Zheng Y, Li D, Hong Q, Zhang M, Li Q et al (2021) Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses. EBioMedicine 70:103477. https://doi.org/10.1016/j.ebiom.2021.103477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petri M, Fu W, Ranger A, Allaire N, Cullen P, Magder LS et al (2019) Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics 12(1):4. https://doi.org/10.1186/s12920-018-0468-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Toro-Dominguez D, Martorell-Marugan J, Goldman D, Petri M, Carmona-Saez P, Alarcon-Riquelme ME (2018) Stratification of systemic lupus erythematosus patients into three groups of disease activity progression according to longitudinal gene expression. Arthritis Rheumatol 70(12):2025–2035. https://doi.org/10.1002/art.40653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kennedy WP, Maciuca R, Wolslegel K, Tew W, Abbas AR, Chaivorapol C et al (2015) Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci Med 2(1):e000080. https://doi.org/10.1136/lupus-2014-000080

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu H, Mi W, Luo H, Chen T, Liu S, Raman I et al (2016) Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus. Arthritis Res Ther 18:162. https://doi.org/10.1186/s13075-016-1050-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686. https://doi.org/10.1002/art.34473

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9(2):280–299. https://doi.org/10.1007/s11306-012-0482-9

    Article  CAS  PubMed  Google Scholar 

  21. Crow MK (2023) Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis. https://doi.org/10.1136/ard-2022-223741

    Article  PubMed  Google Scholar 

  22. Mahroum N, Elsalti A, Shoenfeld Y (2023) Herpes simplex virus and SLE: though uncommon yet with significant implications. J Med Virol 95(3):e28689. https://doi.org/10.1002/jmv.28689

    Article  CAS  PubMed  Google Scholar 

  23. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM (2019) Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses. 11(8):762. https://doi.org/10.3390/v11080762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quaglia M, Merlotti G, De Andrea M, Borgogna C, Cantaluppi V (2021) Viral infections and systemic lupus erythematosus: new players in an old story. Viruses. 13(2):277. https://doi.org/10.3390/v13020277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nielsen HL, Ronnov-Jessen L, Villadsen R, Petersen OW (2002) Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer. Genomics 79(5):703–710. https://doi.org/10.1006/geno.2002.6755

    Article  CAS  PubMed  Google Scholar 

  26. Li T, Lu H, Shen C, Lahiri SK, Wason MS, Mukherjee D et al (2014) Identification of epithelial stromal interaction 1 as a novel effector downstream of Kruppel-like factor 8 in breast cancer invasion and metastasis. Oncogene 33(39):4746–4755. https://doi.org/10.1038/onc.2013.415

    Article  CAS  PubMed  Google Scholar 

  27. Meng X, Yang D, Yu R, Zhu H (2015) EPSTI1 is involved in IL-28A-mediated inhibition of HCV infection. Mediators Inflamm 2015:716315. https://doi.org/10.1155/2015/716315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cooles FAH, Tarn J, Lendrem DW, Naamane N, Lin CM, Millar B et al (2022) Interferon-alpha-mediated therapeutic resistance in early rheumatoid arthritis implicates epigenetic reprogramming. Ann Rheum Dis 81(9):1214–1223. https://doi.org/10.1136/annrheumdis-2022-222370

    Article  CAS  PubMed  Google Scholar 

  29. Kim YH, Lee JR, Hahn MJ (2018) Regulation of inflammatory gene expression in macrophages by epithelial-stromal interaction 1 (Epsti1). Biochem Biophys Res Commun 496(2):778–783. https://doi.org/10.1016/j.bbrc.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  30. Vieira M, Régnier P, Maciejewski-Duval A, Le Joncour A, Darasse-Jèze G, Rosenzwajg M et al (2022) Interferon signature in giant cell arteritis aortitis. J Autoimmun 127:102796. https://doi.org/10.1016/j.jaut.2022.102796

    Article  CAS  PubMed  Google Scholar 

  31. Khuder SA, Al-Hashimi I, Mutgi AB, Altorok N (2015) Identification of potential genomic biomarkers for Sjögren’s syndrome using data pooling of gene expression microarrays. Rheumatol Int 35(5):829–836. https://doi.org/10.1007/s00296-014-3152-6

    Article  CAS  PubMed  Google Scholar 

  32. Sun JL, Zhang HZ, Liu SY, Lian CF, Chen ZL, Shao TH et al (2020) Elevated EPSTI1 promote B cell hyperactivation through NF-kappaB signalling in patients with primary Sjogren’s syndrome. Ann Rheum Dis 79(4):518–524. https://doi.org/10.1136/annrheumdis-2019-216428

    Article  CAS  PubMed  Google Scholar 

  33. Raterman HG, Vosslamber S, de Ridder S, Nurmohamed MT, Lems WF, Boers M et al (2012) The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther 14(2):R95. https://doi.org/10.1186/ar3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharabi A, Tsokos GC (2020) T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 16(2):100–112. https://doi.org/10.1038/s41584-019-0356-x

    Article  CAS  PubMed  Google Scholar 

  35. Chen PM, Tsokos GC (2021) T Cell Abnormalities in the Pathogenesis of systemic lupus erythematosus: an update. Curr Rheumatol Rep 23(2):12. https://doi.org/10.1007/s11926-020-00978-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shan J, Jin H, Xu Y (2020) T cell metabolism: a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus. Front Immunol 11:1027. https://doi.org/10.3389/fimmu.2020.01027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tenbrock K, Rauen T (2022) T cell dysregulation in SLE. Clin Immunol 239:109031. https://doi.org/10.1016/j.clim.2022.109031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients who participated in the studies.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81901664, 82070018, 82270097) and Natural Science Foundation of Hunan Province (2020JJ5894).

Author information

Authors and Affiliations

Authors

Contributions

Yiying Yang conceived and designed the study, performed the experiments, analyzed the data, and drafted this manuscript, as the first author. Xiaoyu Xiao performed the experiments and prepared figures and tables. Muyao Guo and Huali Zhang contributed to the analysis of the data, and revising of the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoyu Xiao or Muyao Guo.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Table (22.0 KB docx)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, H., Xiao, X. et al. Identification of EPSTI1 as a new potential biomarker for SLE based on GEO database. Clin Rheumatol 43, 1531–1540 (2024). https://doi.org/10.1007/s10067-024-06881-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-024-06881-z

Keywords

Navigation