Skip to main content

Advertisement

Log in

Early stages of diffuse idiopathic skeletal hyperostosis (DISH) and chronic inflammation: the Camargo Cohort Study

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction/objectives

DISH has traditionally been considered a non-inflammatory rheumatic disorder. Currently, an inflammatory component has been theorized in the early phases of this condition (EDISH). The study is aimed at investigating a possible relationship between EDISH and chronic inflammation.

Method

Analytical-observational study: participants from the Camargo Cohort Study were enrolled. We collected clinical, radiological, and laboratory data. C-reactive protein (CRP), albumin-to-globulin ratio (AGR), and triglyceride-glucose (TyG) index were assessed. EDISH was defined by Schlapbach’s scale grades I or II. A fuzzy matching with tolerance factor = 0.2 was performed. Subjects without ossification (NDISH), sex- and age-matched with cases (1:4), acted as controls. Definite DISH was an exclusion criterion. Multivariable analyses were performed.

Results

We evaluated 987 persons (mean age 64 ± 8 years; 191 cases with 63.9% women). EDISH subjects presented more frequently obesity, T2DM, MetS, and the lipid pattern [↑TG ↓TC]. TyG index and alkaline phosphatase (ALP) were higher. Trabecular bone score (TBS) was significantly lower (1.310 [0.2] vs. 1.342 [0.1]; p = 0.025). CRP and ALP showed the highest correlation (r = 0.510; p = 0.0001) at lowest TBS level. AGR was lower, and its correlations with ALP (r =  − 0.219; p = 0.0001) and CTX (r =  − 0.153; p = 0.022), were weaker or non-significant in NDISH. After adjustment for potential confounders, estimated CRP means for EDISH and NDISH were 0.52 (95% CI: 0.43–0.62) and 0.41 (95% CI: 0.36–0.46), respectively (p = 0.038).

Conclusions

EDISH was associated with chronic inflammation. Findings revealed an interplay between inflammation, trabecular impairment, and the onset of ossification. Lipid alterations were similar to those observed in chronic-inflammatory diseases.

Key Points

An inflammatory component has been theorized in early stages of DISH (EDISH)

In EDISH group compared to non-DISH, we observed significantly higher correlations between biomarkers and some relevant variables. In particular, with alkaline phosphatase (ALP) and with trabecular bone score (TBS)

EDISH has shown to be associated with chronic inflammation

The lipid alterations observed in the EDISH group were similar to those observed in chronic-inflammatory diseases

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AGR:

Albumin-to-globulin ratio

ALP:

Alkaline phosphatase

ALVL:

Anterior longitudinal vertebral ligament

BG:

Basal glycemia

CRP:

C-reactive protein

CVD:

Cardiovascular disease

DAMPs:

Damage-associated molecular patterns

DDISH:

Definite DISH

EDISH:

Early DISH

MetS:

Metabolic syndrome

NDISH:

Non-DISH

TBS:

Trabecular bone score

TC:

Total cholesterol

TyG index:

Triglyceride-glucose index

T2DM:

Type 2 diabetes mellitus

WC:

Waist circumference

References

  1. Forestier J, Rotes-Querol J (1950) Senile ankylosing hyperostosis of the spine. Ann Rheum Dis 9:321–330. https://doi.org/10.1136/ard.9.4.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Resnick D, Shapiro RF, Wiesner KB et al (1978) Diffuse idiopathic skeletal hyperostosis (DISH) [ankylosing hyperostosis of Forestier and Rotes-Querol]. Semin Arthritis Rheum 7:153–157. https://doi.org/10.1016/0049-0172(78)90036-7

    Article  CAS  PubMed  Google Scholar 

  3. Mader R, Verlaan JJ, Buskila D (2013) Diffuse idiopathic skeletal hyperostosis: clinical features and pathogenic mechanisms. Nat Rev Rheumatol 9:741–750. https://doi.org/10.1038/nrrheum.2013.165

    Article  PubMed  Google Scholar 

  4. Dąbrowski M, Kubaszewski Ł (2021) Diffuse idiopathic skeletal hyperostosis of cervical spine with dysphagia-molecular and clinical aspects. Int J Mol Sci 22:4255. https://doi.org/10.3390/ijms22084255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li H, Jiang LS, Dai LY (2007) Hormones and growth factors in the pathogenesis of spinal ligament ossification. Eur Spine J 16:1075–1084. https://doi.org/10.1007/s00586-007-0356-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niu CC, Lin SS, Yuan LJ et al (2017) Correlation of blood bone turnover biomarkers and Wnt signalling antagonists with AS, DISH, OPLL, and OYL. BMC Musculoskelet Disord 18:61. https://doi.org/10.1186/s12891-017-1425-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olivieri I, D’Angelo S, Palazzi C et al (2009) Diffuse idiopathic skeletal hyperostosis: differentiation from ankylosing spondylitis. Curr Rheumatol Rep 11:321–328. https://doi.org/10.1007/s11926-009-0046-9

    Article  PubMed  Google Scholar 

  8. Mader R, Pappone N, Baraliakos X et al (2021) Diffuse idiopathic skeletal hyperostosis (DISH) and a possible inflammatory component. Curr Rheumatol Rep 23:6. https://doi.org/10.1007/s11926-020-00972-x

    Article  PubMed  Google Scholar 

  9. Denko CW, Boja B, Malemud CJ (2002) Growth hormone and insulin-like growth factor-I in symptomatic and asymptomatic patients with diffuse idiopathic skeletal hyperostosis (DISH). Front Biosci 7:a37-43. https://doi.org/10.1111/j.1651-2227.1991.tb12014.x

    Article  CAS  PubMed  Google Scholar 

  10. Mader R, Novofastovski I, Iervolino S et al (2015) Ultrasonography of peripheral entheses in the diagnosis and understanding of diffuse idiopathic skeletal hyperostosis (DISH). Rheumatol Int 35:493–497. https://doi.org/10.1007/s00296-014-3190-0

    Article  PubMed  Google Scholar 

  11. Latourte A, Charlon S, Etcheto A et al (2018) Imaging findings suggestive of axial spondyloarthritis in diffuse idiopathic skeletal hyperostosis. Arthritis Care Res (Hoboken) 70:145–152. https://doi.org/10.1002/acr.23244

    Article  PubMed  Google Scholar 

  12. Kuperus JS, Waalwijk JF, Regan EA et al (2018) Simultaneous occurrence of ankylosing spondylitis and diffuse idiopathic skeletal hyperostosis: a systematic review. Rheumatology (Oxford) 57:2120–2128. https://doi.org/10.1093/rheumatology/key211

    Article  PubMed  Google Scholar 

  13. Pillai S, Littlejohn G (2014) Metabolic factors in diffuse idiopathic skeletal hyperostosis - a review of clinical data. Open Rheumatol J 8:116–128. https://doi.org/10.2174/1874312901408010116

    Article  PubMed  PubMed Central  Google Scholar 

  14. Glick K, Novofastovski I, Schwartz N et al (2020) Cardiovascular disease in diffuse idiopathic skeletal hyperostosis (DISH): from theory to reality-a 10-year follow-up study. Arthritis Res Ther 22:190. https://doi.org/10.1186/s13075-020-02278-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. Furman D, Campisi J, Verdin E et al (2019) Chronic inflammation in the aetiology of disease across the life span. Nat Med 25:1822–1832. https://doi.org/10.1038/s41591-019-0675-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuperus JS, de Gendt EEA, Oner FC et al (2017) Classification criteria for diffuse idiopathic skeletal hyperostosis: a lack of consensus. Rheumatology (Oxford) 56:1123–1134. https://doi.org/10.1093/rheumatology/kex056

    Article  PubMed  Google Scholar 

  17. Bieber A, Masala IF, Mader R et al (2020) Differences between diffuse idiopathic skeletal hyperostosis and spondyloarthritis. Immunotherapy 12:749–756. https://doi.org/10.2217/imt-2020-0045

    Article  CAS  PubMed  Google Scholar 

  18. Hernández JL, Olmos JM, Pariente E et al (2010) Metabolic syndrome and bone metabolism: the Camargo Cohort Study. Menopause 17:955–961. https://doi.org/10.1097/gme.0b013e3181e39a15

    Article  PubMed  Google Scholar 

  19. Feingold KR, Grunfeld C (2000) The effect of inflammation and infection on lipids and lipoproteins. In: Endotext. MDText.com, Inc., South Dartmouth, MA. https://www.ncbi.nlm.nih.gov/books/NBK326741/. Accessed 13 May 2022

  20. Levey AS, Stevens LA, Schmid CH et al (2009) CKD-EPI (Chronic kidney disease epidemiology collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23:469–480. https://doi.org/10.1111/j.1464-5491.2006.01858.x

    Article  CAS  PubMed  Google Scholar 

  22. Genant HK, Wu CY, van Kuijk C et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  CAS  PubMed  Google Scholar 

  23. McCloskey EV, Odén A, Harvey NC et al (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31:940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  24. Ciftci AB, Bük ÖF, Yemez K et al (2022) Risk factors and the role of the albumin-to-globulin ratio in predicting recurrence among patients with idiopathic granulomatous mastitis. J Inflamm Res 15:5401–5412. https://doi.org/10.2147/JIR.S377804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu XC, He GD, Lo K et al (2021) The triglyceride-glucose index, an insulin resistance marker, was non-linear associated with all-cause and cardiovascular mortality in the general population. Front Cardiovasc Med 7:628109. https://doi.org/10.3389/fcvm.2020.628109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlapbach P, Beyeler C, Gerber NJ et al (1989) Diffuse idiopathic skeletal hyperostosis (DISH) of the spine: a cause of back pain? A controlled study. Br J Rheumatol 28:299–303. https://doi.org/10.1093/rheumatology/28.4.299

    Article  CAS  PubMed  Google Scholar 

  27. Pini SF, Acosta-Ramón V, Tobalina-Segura M et al (2019) Interobserver agreement using Schlapbach graded scale for diffuse idiopathic skeletal hyperostosis (DISH): can we reduce the cut-off point of vertebral affection? Clin Rheumatol 38:1155–1162. https://doi.org/10.1007/s10067-018-4398-2

    Article  PubMed  Google Scholar 

  28. Bottigliengo D, Baldi I, Lanera C et al (2021) Oversampling and replacement strategies in propensity score matching: a critical review focused on small sample size in clinical settings. BMC Med Res Methodol 21:256. https://doi.org/10.1186/s12874-021-01454-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Masana L, Correig E, Ibarretxe D, STACOV-XULA research group, et al (2021) Low HDL and high triglycerides predict COVID-19 severity. Sci Rep 11:7217. https://doi.org/10.1038/s41598-021-86747-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh RS, Craig MC, Katholi CR et al (2003) The predictive value of creatine phosphokinase and alkaline phosphatase in identification of heterotopic ossification in patients after spinal cord injury. Arch Phys Med Rehabil 84:1584–1588. https://doi.org/10.1053/s0003-9993(03)00347-2

    Article  PubMed  Google Scholar 

  31. Miyazawa N, Akiyama I (2006) Diffuse idiopathic skeletal hyperostosis associated with risk factors for stroke. A case-control study. Spine 31:I225-229. https://doi.org/10.1097/01.brs.0000214949.75361.f4

    Article  Google Scholar 

  32. Sarzi-Puttini P, Atzeni F (2004) New developments in our understanding of DISH (diffuse idiopathic skeletal hyperostosis). Curr Opin Rheumatol 16:287–292. https://doi.org/10.1097/00002281-200405000-00021

    Article  CAS  PubMed  Google Scholar 

  33. Kosaka T, Imakiire A, Mizuno F et al (2000) Activation of nuclear factor kappa B at the onset of ossification of the spinal ligaments. J Orthop Sci 5:572–578. https://doi.org/10.1007/s007760070008

    Article  CAS  PubMed  Google Scholar 

  34. Love KM, Liu Z (2021) DPP4 activity, hyperinsulinemia, and atherosclerosis. J Clin Endocrinol Metab 106:1553–1565. https://doi.org/10.1210/clinem/dgab078

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pini SF, Sgaramella GA, Pariente-Rodrigo E et al (2020) Trabecular bone score and bone turnover markers in men with DISH: data from the Camargo Cohort Study. Semin Arthritis Rheum 50:1521–1524. https://doi.org/10.1016/j.semarthrit.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  36. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788. https://doi.org/10.1172/JCI20514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Epsley S, Tadros S, Farid A et al (2021) The effect of inflammation on bone. Front Physiol 11:511799. https://doi.org/10.3389/fphys.2020.511799

    Article  PubMed  PubMed Central  Google Scholar 

  38. Napoli N, Chandran M, Pierroz DD et al (2017) IOF Bone and Diabetes Working Group (2017) Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13:208–219. https://doi.org/10.1038/nrendo.2016.153

    Article  CAS  PubMed  Google Scholar 

  39. Rhoads JP, Major AS (2018) How oxidized low-density lipoprotein activates inflammatory responses. Crit Rev Immunol 38:333–342. https://doi.org/10.1615/CritRevImmunol.2018026483

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harlianto NI, Westerink J, Foppen W et al (2021) on behalf of the UCC-SMART-Study Group (2021) Visceral adipose tissue and different measures of adiposity in different severities of diffuse idiopathic skeletal hyperostosis. J Pers Med 11:663. https://doi.org/10.3390/jpm11070663

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim GR, Choi DW, Nam CM et al (2020) Synergistic association of high-sensitivity C-reactive protein and body mass index with IR in non-diabetic adults. Sci Rep 10:18417. https://doi.org/10.1038/s41598-020-75390-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Helal I, Zerelli L, Krid M et al (2012) A comparison of C-reactive protein and high-sensitivity C-reactive protein levels in patients on hemodialysis. Saudi J Kidney Dis Transpl 23:477–483. Available from: https://www.sjkdt.org/text.asp?2012/23/3/477/95749

  44. Milone MT, Kamath AF, Israelite CL (2014) Converting between high- and low-sensitivity C-reactive protein in the assessment of periprosthetic joint infection. J Arthroplasty 29:685–689. https://doi.org/10.1016/j.arth.2013.09.015

    Article  PubMed  Google Scholar 

  45. Min HJ, Park JS, Yang J et al (2022) The effect of periodontitis on recipient outcomes after kidney transplantation. Kidney Res Clin Pract. 41:114–123. https://doi.org/10.23876/j.krcp.21.097

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from Instituto de Salud Carlos III (PI21/00532) that could be co-funded by European Union FEDER funds.

Author information

Authors and Affiliations

Authors

Contributions

Emilio Pariente: conception and design, analysis and interpretation of data, and drafting the manuscript.

Stefanie F. Pini: conception and design, acquisition of data, and drafting the manuscript.

José M. Olmos: analysis and interpretation of data and revising the manuscript critically.

Patricia Fierro: acquisition of data and drafting the manuscript.

Rosa Landeras: analysis and interpretation of data and revising the manuscript critically.

Carmen Ramos: conception and design, drafting the manuscript, and revising the manuscript critically.

Víctor M. Martínez-Taboada: conception and design, analysis and interpretation of data, and revising the manuscript critically.

José L. Hernández: conception and design, analysis and interpretation of data, and revising the manuscript critically.

All of them have approved the final version of the manuscript.

Corresponding author

Correspondence to Emilio Pariente.

Ethics declarations

Disclosures

None.

Ethics approval and consent to participate

The postulates of the Declaration of Helsinki were fulfilled. The Camargo Cohort Study was approved by the Clinical Research Ethics Committee of Cantabria (Internal Code 2018.188). All participants gave written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 18.2 kb)

ESM 2

(PDF 11.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pariente, E., Pini, S.F., Olmos, J.M. et al. Early stages of diffuse idiopathic skeletal hyperostosis (DISH) and chronic inflammation: the Camargo Cohort Study. Clin Rheumatol 42, 1931–1942 (2023). https://doi.org/10.1007/s10067-023-06574-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06574-z

Keywords

Navigation