Skip to main content

Advertisement

Log in

Diffuse Idiopathic Skeletal Hyperostosis (DISH) and a Possible Inflammatory Component

  • Spondyloarthritis (M Khan, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diffuse Idiopathic Skeletal Hyperostosis (DISH) is considered a metabolic condition, characterized by new bone formation affecting mainly at entheseal sites. Enthesitis and enthesopathies occur not only in the axial skeleton but also at some peripheral sites, and they resemble to some extent the enthesitis that is a cardinal feature in spondyloarthritis (SpA), which is an inflammatory disease.

Recent Findings

We review the possible non-metabolic mechanism such as inflammation that may also be involved at some stage and help promote new bone formation in DISH. We discuss supporting pathogenic mechanisms for a local inflammation at sites typically affected by this disease, and that is also supported by imaging studies that report some similarities between DISH and SpA.

Summary

Local inflammation, either primary or secondary to metabolic derangements, may contribute to new bone formation in DISH. This new hypothesis is expected to stimulate further research in both the metabolic and inflammatory pathways in order to better understand the mechanisms that lead to new bone formation. This may lead to development of measures that will help in earlier detection and effective management before damage occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH). Radiology. 1976;119:559–68.

    CAS  PubMed  Google Scholar 

  2. Mader R, Buskila D, Verlaan JJ, Atzeni F, Olivieri I, Pappone N, et al. Developing new classification criteria for diffuse idiopathic skeletal hyperostosis: back to square one. Rheumatology (Oxford). 2013;52:326–30.

    Google Scholar 

  3. • Kuperus JS, Waalwijk JF, Regan EA, van der Horst-Bruinsma IE, Oner FC, de Jong PA, et al. Simultaneous occurrence of ankylosing spondylitis and diffuse idiopathic skeletal hyperostosis: a systematic review. Rheumatology (Oxford). 2018;57:2120–8 A review on this co-occurrence of AS and DISH.

    Google Scholar 

  4. Khan MA. Ankylosing spondylitis-axial spondyloarthritis, Professional Communications Inc. (PCI). West Islip; 2016. p. 1–333. ISBN: 978-1-943236-08-4

  5. Watad A, Cuthbert RJ, Amital H, McGonagle D. Enthesitis: much more than focal insertion poin inflammation. Best Pract Res Curr Rheumatol Rep. 2018;20(7):41. https://doi.org/10.1007/s11926-018-0751-3.

    Article  Google Scholar 

  6. Mader R, Sarzi-Puttini P, Atzeni F, Olivieri I, Pappone N, Verlaan JJ, et al. Extraspinal manifestations of diffuse idiopathic skeletal hyperostosis. Rheumatology (Oxford). 2009;48:1478–81.

    Google Scholar 

  7. Haller J, Resnick D, Miller GW, Schils JP, Kerr R, Bielecki D, et al. Diffuse idiopathic skeletal hyperostosis: diagnostic significance of radiographic abnormalities of the pelvis. Radiology. 1989;172:835–9.

    CAS  PubMed  Google Scholar 

  8. Yagan R, Khan MA. Confusion of roentgenographic differential diagnosis between ankylosing hyperostosis (Forestier’s disease) and ankylosing spondylitis. Clin Rheumatol. 1983;2:285–92.

    CAS  PubMed  Google Scholar 

  9. Yagan R, Khan MA, Bellon EM. Spondylitis and posterior longitudinal ligament ossification in the cervical spine. Arthritis Rheum. 1983;26:226–30.

    CAS  PubMed  Google Scholar 

  10. Slonimsky E, Leibushor N, Aharoni D, Lidar M, Eshed I. Pelvic enthesopathy on CT is significantly more prevalent in patients with diffuse idiopathic skeletal hyperostosis (DISH) compared with matched control patients. Clin Rheumatol. 2016;35:1823–7.

    PubMed  Google Scholar 

  11. Weiss BG, Bachmann LM, Pfirrmann CWA, Kissling RO, Zubler V. Whole body magnetic resonance imaging features in diffuse idiopathic skeletal hyperostosis MRI in conjunction with clinical variables to whole body MRI and clinical variables in ankylosing spondylitis. J Rheumatol. 2016;43:335–42.

    CAS  PubMed  Google Scholar 

  12. • Hiyama A, Katoh H, Sakai D, Sato M, Tanaka M, Watanabe M. Prevalence of diffuse idiopathic skeletal hyperostosis (DISH) assessed with whole-spine computed tomography in 1479 subjects. BMC Musculoskelet Disord. 2018;19:178 A very large study of DISH using who spine CT.

    PubMed  PubMed Central  Google Scholar 

  13. • Latourte A, Charlon SE, Etcheto A, Feydy A, Allanore Y, Dougados M, et al. Imaging findings suggestive of axial spondyloarthritis in diffuse idiopathic skeletal hyperostosis. Arthritis Care Res. 2018;70:145–52 A discussion of imaging findings of axSpA and DISH.

    Google Scholar 

  14. Baraliakos X, Listing J, Buschmann J, von der Recke A, Braun J. A comparison of new bone formation in patients with ankylosing spondylitis and patients with diffuse idiopathic skeletal hyperostosis. A retrospective cohort study over six years. Arthritis Rheumatol. 2012;64:1127–33.

    CAS  Google Scholar 

  15. Mader R, Novofastovski I, Iervolino S, Pavlov A, Chervinsky L, Schwartz N, et al. Ultrasonography of peripheral entheses in the diagnosis and understanding of diffuse idiopathic skeletal hyperostosis (DISH). Rheumatol Int. 2015;35:493–7.

    PubMed  Google Scholar 

  16. • Bieber A, Masala IF, Mader R, Atzeni F. Differences between diffuse idiopathic skeletal hyperostosis and spondyloarthritis. Immunotherapy. 2020;12:749–56 This is the most current review on this subject.

    CAS  PubMed  Google Scholar 

  17. Beardwell A. Familial Ankylosing vertebral hyperostosis with Tylosis. Ann Rheum Dis. 1969;28:518–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Abiteboul M, Mazières B, Ménard H. À propos De Deux Nouveaux Cas Familiaux D’Hyperostose Vertébrale Ankylosante. Rev Rheumatisme. 1985;52:645–7.

    CAS  Google Scholar 

  19. Gorman C, Jawad ASM, Chikanza I. A family with diffuse idiopathic skeletal hyperostosis. Ann Rheum Dis. 2005;64:1794–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruges Armas J, Couto AR, Timms A, Santos MR, Bettencourt BF, Peixoto MJ, et al. Ectopic calcification among families in the Azores: clinical and radiologic manifestations in families with diffuse idiopathic skeletal hyperostosis and chondrocalcinosis. Arthritis Rheum. 2006;54:1340–9.

    PubMed  Google Scholar 

  21. Kranenburg HC, Westerveld LA, Verlaan JJ, Oner FC, Dhert JA, Voorhout G, et al. The dog as an animal model for DISH. Eur Spine J. 2010;19:1325–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsukahara S, Miyazawa N, Akagawa H, Foreijtova S, Pavelka K, Tanaka T, et al. COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine. 2005;30:2321–4.

    PubMed  Google Scholar 

  23. Jun JK, Kim SM. Association study of fibroblast growth factor 2 and fibroblast growth factor receptors gene polymorphism in Korean ossification of the posterior longitudinal ligament patients. J Korean Neurosurg Soc. 2012;52:7–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Couto AR, Parreira B, Thomson R, Soares M, Power DM, Stankovich J, et al. Combined approach for finding susceptibility genes in DISH/chondrocalcinosis families: whole-genome-wide linkage and IBS/IBD studies. Human Genome Variation. 2017;4:17041. https://doi.org/10.1038/hgv.2017.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parreira B, Couto AR, Rocha F, Sousa M, Faustino V, Power DM, et al. Whole exome sequencing of patients with diffuse idiopathic skeletal hyperostosis & calcium pyrophosphate crystal chondrocalcinosis. Acta Reumatol Port. 2020;45:116–26.

    PubMed  Google Scholar 

  26. Zhou Y, Wang T, Hamilton JL, Di Chen D. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis. Curr Rheumatol Rep. 2017;19:53.

    PubMed  PubMed Central  Google Scholar 

  27. Daoussis D, Andonopoulos AP. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Semin Arthritis Rheum. 2011;41:170–7.

    CAS  PubMed  Google Scholar 

  28. Heiland GR, Appel H, Poddubnyy D, Zwerina J, Hueber X, Haibel H, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71:572–4.

    CAS  PubMed  Google Scholar 

  29. Senolt L, Hulejova H, Krystufkova O, Forejtova S, Andres Cerezo L, Gatterova J, et al. Low circulating Dickkopf-1 and its link with severity of spinal involvement in diffuse idiopathic skeletal hyperostosis. Ann Rheum Dis. 2012;71:71–4.

    CAS  PubMed  Google Scholar 

  30. Mader R, Verlaan JJ. Exploring factors responsible for bone formation in diffuse idiopathic skeletal hyperostosis (DISH). Nat Rev Rheumatol. 2011;8:10–2.

    PubMed  Google Scholar 

  31. Bakirci MS, Dabague J, Eder L, McGonagle D, Aydin SZ. The role of obesity on inflammation and damage in spondyloarthritis: a systematic literature review on body mass index and imaging. Clin Exp Rheumatol. 2020;38:144–8.

    PubMed  Google Scholar 

  32. Despres JP, Lemieux I, Bergeron J, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.

    CAS  PubMed  Google Scholar 

  33. Despres JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126:1301–13.

    PubMed  Google Scholar 

  34. Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem. 2007;14:1095–100.

    CAS  PubMed  Google Scholar 

  35. Krysiak R, Handzlik-Orlik G, Okopien B. The role of adipokines in connective tissue diseases. Eur J Nutr. 2012;51:513–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Genre F, Lopez-Mejias R, Miranda-Filloy JA, et al. Adipokines, biomarkers of endothelial activation, and metabolic syndrome in patients with ankylosing spondylitis. Biomed Res Int. 2014;860651.

  37. Kvist H, Chowdhury B, Grangard U, Tylen U, Sjostrom L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr. 1988;48:1351–61.

    CAS  PubMed  Google Scholar 

  38. Amato MC, Giordano C. Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol. 2014;730827.

  39. Dan Lantsman C, et al. Abdominal fat distribution in diffuse idiopathic skeletal hyperostosis and ankylosing spondylitis patients compared to controls. Clin Radiol. 2018;73:910.

    PubMed  Google Scholar 

  40. Shinoda Y, YamaguchiM ON, Akune T, Kubota N, Yamauchi T, Terauchi Y, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem. 2006;99:196–208.

    CAS  PubMed  Google Scholar 

  41. Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 2006;1:1648–56.

    Google Scholar 

  42. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T. Relationships between serum adiponectin levels versus bone mineral density, bone metabolic markers, and vertebral fractures in type 2 diabetes mellitus. Eur J Endocrinol. 2009;160:265–73.

    CAS  PubMed  Google Scholar 

  43. Mader R, Novofastovski I, Schwartz N, Rosner E. Serum adiponectin levels in patients with diffuse idiopathic skeletal hyperostosis (DISH). Clin Rheumatol. 2018;34:2839–45.

    Google Scholar 

  44. Konigorski S, Janke J, Drogan D, Bergmann MM, Hierholzer J, Kaaks R, et al. Prediction of circulating adipokine levels based on body fat compartments and adipose tissue gene expression. Obes Facts. 2019;12:590–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. •• Wedell-Neergaard AS, Lehrskov LL, Christensen RH, Legaard GE, Dorph E, Larsen MK, et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 2018;29:844–55 Visceral adipose tissue is harmful to metabolic health. These authors have shown that IL-6 is required for exercise to reduce visceral adipose tissue mass.

    PubMed  Google Scholar 

  46. Schett G, Lories RJ, D’Agostino MA, Elewaut D, Kirkham B. SorianoER, McGonagle D.Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol. 2017;13:731–41.

    CAS  PubMed  Google Scholar 

  47. Tanno M, Furukawa KI, Ueyama K, Harata S, Motomurab S. Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone. 2003;33:475–84.

    CAS  PubMed  Google Scholar 

  48. Lories RJU, Luyten FR, de Vlam K. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther. 2009;11:221.

    PubMed  PubMed Central  Google Scholar 

  49. Mader R, Verlaan JJ, Buskila D. Diffuse idiopathic skeletal hyperostosis: clinical manifestations and pathogenic mechanisms. Nat Rev Rheumatol. 2013;9:741–50.

    PubMed  Google Scholar 

  50. Hayden MR, Tyagi SC. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol. 2004; 3. https://doi.org/10.1186/1475-2840-3-1

  51. Davaine JM, Quillard T, Chatelais M, Guilbaud F, Brion R, Guyomarch B, et al. Bone like arterial calcification in femoral atherosclerotic lesions: prevalence and role of osteoprotegerin and pericytes. Eur J Vasc Endovasc Surg. 2016;51:259–67.

    PubMed  Google Scholar 

  52. Di Girolamo DJ, Mukherjee A, Fulzele K, et al. Mode of growth hormone action in osteoblasts. J Biol Chem. 2007;282:31666–74.

    Google Scholar 

  53. Olivieri I, D’Angelo S, Cutro MS, Padula A, Peruz G, Montaruli M, et al. Diffuse idiopathic skeletal hyperostosis may give the typical postural abnormalities of advanced ankylosing spondylitis. Rheumatology (Oxford). 2007;46(11):1709–11.

    CAS  Google Scholar 

  54. Jumshyd A, Khan MA. Ankylosing hyperostosis in American Blacks: a longitudinal study. Clin Rheumatol. 1983;2:123–6.

    CAS  PubMed  Google Scholar 

  55. Carroll GP, Lim A, Breidahl WH, Dewing WM, Coleman S. Successful treatment of DISH with TNF inhibitors (TNFI). Ann Rheum Dis. 2015; suppl. https://doi.org/10.1136/annrheumdis-2015-eular.5257

  56. Lim A, Breidahl WH, Song SJ, et al. An audit of clinical service delivery and outcomes in diffuse idiopathic skeletal hyperostosis – preliminary evidence for efficacy of tumour necrosis factor inhibition therapy. Tasman Med J. 2021;3(1):11–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuven Mader.

Ethics declarations

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spondyloarthritis

Keypoints

• DISH is characterized by new bone formation considered to be a non-inflammatory in nature.

• There is data to support that a local inflammatory condition might also promote new bone formation in DISH.

• Research should also focus on inflammatory basis in DISH due to its possible implications on future treatments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mader, R., Pappone, N., Baraliakos, X. et al. Diffuse Idiopathic Skeletal Hyperostosis (DISH) and a Possible Inflammatory Component. Curr Rheumatol Rep 23, 6 (2021). https://doi.org/10.1007/s11926-020-00972-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00972-x

Keywords

Navigation