Skip to main content

Advertisement

Log in

Cerebrovascular involvement in systemic childhood vasculitides

  • REVIEW ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Pediatric vasculitides sometimes involve central nervous system (CNS). The manifestations are diverse, ranging from headache, seizures, vertigo, ataxia, behavioral changes, neuropsychiatric symptoms, consciousness disorders, and even cerebrovascular (CV) accidents that may lead to irreversible impairment and even death. Stroke, on the other hand despite the great progress in prevention and treatment, is still one of the leading causes of morbidity and mortality in the general population. The aim of this article was to summarize CNS manifestations and CV issues observed in primary pediatric vasculitides and the current knowledge of etiology and CV risk factors, preventive strategies, and therapeutic options in this target patient population. Pathophysiological links reveal similar immunological mechanisms involved in both pediatric vasculitides and CV events with endothelial injury and damage being the central point. From the clinical point of view, CV events in pediatric vasculitides were associated with increased morbidity and poor prognosis. If damage has already occurred, the therapeutic approach consists of good management of the vasculitis itself, antiplatelet and anticoagulation therapy, and early rehabilitation. Risk factors for acquiring cerebrovascular disease (CVD) and stroke, particularly hypertension and early atherosclerotic changes, already begin in childhood, with vessel wall inflammation contributing itself, once more emphasizing that appropriate preventive measures are certainly necessary in pediatric vasculitis population to improve their long-term outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data shown.

References

  1. Gardner-Medwin JM, Dolezalova P, Cummins C, Southwood TR (2002) Incidence of Henoch-Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360:1197–202. https://doi.org/10.1016/S0140-6736(02)11279-7

    Article  PubMed  Google Scholar 

  2. Ozen S, Pistorio A, Iusan SM et al (2010) EULAR/PRINTO/PRES criteria for Henoch-Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: final classification criteria. Ann Rheum Dis 69:798–806. https://doi.org/10.1136/ard.2009.116657

    Article  PubMed  Google Scholar 

  3. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F et al (2013) 2012 revised International Chapel Hill consensus conference nomenclature of vasculitides. Arthritis Rheum 65(1):1–11. https://doi.org/10.1002/art.37715

    Article  CAS  PubMed  Google Scholar 

  4. Amiri N, De Vera M, Choi HK, Sayre EC, Avina-Zubieta JA (2016) Increased risk of cardiovascular disease in giant cell arteritis: a general population-based study. Rheumatology (Oxford) 55(1):33–40. https://doi.org/10.1093/rheumatology/kev262

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez-Gay MA, Vazquez-Rodriguez TR, Gomez-Acebo I, Pego-Reigosa R, Lopez-Diaz MJ, Vazquez-Triñanes MC, Miranda-Filloy JA, Blanco R, Dierssen T, Gonzalez-Juanatey C, Llorca J (2009) Strokes at time of disease diagnosis in a series of 287 patients with biopsy-proven giant cell arteritis. Medicine 88:227–235. https://doi.org/10.1097/MD.0b013e3181af4518

    Article  PubMed  Google Scholar 

  6. Zenone T, Puget M (2013) Characteristics of cerebrovascular accidents at time of diagnosis in a series of 98 patients with giant cell arteritis. Rheumatol Int 33:3017–3023. https://doi.org/10.1007/s00296-013-2814-0

    Article  PubMed  Google Scholar 

  7. Goel R, Singh Chandan J, Thayakaran R, Adderley NJ, Nirantharakumar K, Harper L (2021) Cardiovascular and renal morbidity in Takayasu arteritis: a population-based retrospective cohort study from the United Kingdom. Arthritis Rheumatol 73(3):504–511. https://doi.org/10.1002/art.41529

    Article  PubMed  Google Scholar 

  8. Egebjerg K, Baslund B, Obel N, Faurschou M (2020) Mortality and cardiovascular morbidity among patients diagnosed with Takayasu’s arteritis: a Danish nationwide cohort study. Clin Exp Rheumatol 38(Suppl 124):91–94

    PubMed  Google Scholar 

  9. Wallace ZS, Fu X, Harkness T, Stone JH, Zhang Y, Choi H (2020) All-cause and cause-specific mortality in ANCA-associated vasculitis: overall and according to ANCA type. Rheumatology (Oxford) 59(9):2308–2315. https://doi.org/10.1093/rheumatology/kez589

    Article  CAS  PubMed  Google Scholar 

  10. Tan JA, Dehghan N, Chen W, Xie H, Esdaile JM, Avina-Zubieta JA (2017) Mortality in ANCA-associated vasculitis: a meta-analysis of observational studies. Ann Rheum Dis 76(9):1566–1574. https://doi.org/10.1136/annrheumdis-2016-210942

    Article  PubMed  Google Scholar 

  11. Mourguet M, Chauveau D, Faguer S, Ruidavets JB, Béjot Y, Ribes D et al (2019) Increased ischemic stroke, acute coronary artery disease and mortality in patients with granulomatosis with polyangiitis and microscopic polyangiitis. J Autoimmun 96:134–141. https://doi.org/10.1016/j.jaut.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  12. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371(9624):1612–1623

    Article  CAS  PubMed  Google Scholar 

  13. Eurostat (2019) Causes and occurrence of deaths in the EU. Available at https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20190716-1

  14. Béjot Y, Bailly H, Durier J, Giroud M (2016) Epidemiology of stroke in Europe and trends for the 21st century. Presse Med 45(12 Pt 2):e391–e398

    Article  PubMed  Google Scholar 

  15. Ferro JM, Massaro AR, Mas JL (2010) Aethiological diagnosis of ischaemic stroke in young adults. Lancet Neurol 9(11):1085–1096. https://doi.org/10.1016/S1474-4422(10)70251-9

    Article  PubMed  Google Scholar 

  16. Putaala J, Metso AJ, Metso TM, Konkola N, Kraemer Y, Haapaniemi E, Kaste M, Tatlisumak T (2009) Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke 40(4):1195–1203. https://doi.org/10.1161/STROKEAHA.108.529883

    Article  PubMed  Google Scholar 

  17. Savage CO, Pottinger BE, Gaskin G, Pusey CD, Pearson JD (1992) Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells. Am J Pathol 141:335–342

    CAS  PubMed  PubMed Central  Google Scholar 

  18. De Bandt M, Meyer O, Dacosta L, Elbim C, Pasquier C (1999) Anti-proteinase-3 (PR3) antibodies (c-ANCA) recognize various targets on the human umbilical vein endothelial cell (HUVEC) membrane. Clin Exp Immunol 115:362–368. https://doi.org/10.1046/j.1365-2249.1999.00799.x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Muller Kobold AC, van Wijk RT, Franssen CF, Molema G, Kallenberg CG, Tervaert JW (1999) In vitro up-regulation of E-selectin and induction of interleukin-6 in endothelial cells by autoantibodies in Wegener’s granulomatosis and microscopic polyangiitis. Clin Exp Rheumatol 17(4):433–440

    CAS  PubMed  Google Scholar 

  20. Fuchs TA, Abed U, Goosman C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. https://doi.org/10.1083/jcb.200606027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Gröne HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small vessel vasculitis. Nat Med 15(6):623–625. https://doi.org/10.1038/nm.1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen XQ, Tu L, Zou JS, Zhu SQ, Zhao YJ, Qin YH (2021) The Involvement of neutrophil extracellular traps in disease activity associated with IgA vasculitis. Front Immunol 12:668974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida Y, Takeshita S, Kawamura Y, Kanai T, Tsujita Y, Nonoyama S (2020) Enhanced formation of neutrophil extracellular traps in Kawasaki disease. Pediatr Res 87(6):998–1004. https://doi.org/10.1038/s41390-019-0710-3

    Article  CAS  PubMed  Google Scholar 

  24. LeJoncour A, Martos R, Loyau S, Lelay N, Dossier A, Cazes A (2019) Critical role of neutrophil extracellular traps (NETs) in patients with Behcet’s disease. Ann Rheum Dis 78(9):1274–1282. https://doi.org/10.1136/annrheumdis-2018-214335

    Article  CAS  Google Scholar 

  25. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, Hu J, Wang Y, Wagner DD (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci 110(21):8674–8679. https://doi.org/10.1073/pnas.1301059110

    Article  PubMed  PubMed Central  Google Scholar 

  26. Safi R, Kallas R, Bardawil T, Mehanna CJ, Abbas O, Hamam R, Uthman I, Kibbi AG, Nassar D (2018) Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet’s disease. J Dermatol Sci 92:143–150. https://doi.org/10.1016/j.jdermsci.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  27. Brogan PA, Shah V, Brachet C, Harnden A, Mant D, Klein N, Dillon MJ (2004) Endothelial and platelets microparticles in vasculitis in the young. Arthritis Rheum 50(3):927–936. https://doi.org/10.1002/art.20199

    Article  CAS  PubMed  Google Scholar 

  28. Nakatani K, Takeshita S, Tsujimoto H, Kawamura Y, Tokutomi T, Sekine I (2003) Circulating endothelial cells in Kawasaki disease. Clin Exp Immunol 131:536–540. https://doi.org/10.1046/j.1365-2249.2003.02091.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dursun I, Düsünsel R, Poyrazoglu HM, Gunduz Z, Patiroglu T, Ulger H, Gurgoze MK (2011) Circulating endothelial microparticles in children with Henoch-Schönlein purpura; preliminary results. Rheumatol Int 31(12):1595–1600. https://doi.org/10.1007/s00296-010-1528-9

    Article  PubMed  Google Scholar 

  30. Cheung YF, Yung TC, Tam SCF, Ho MHK, Chau AKT (2004) Novel and traditional cardiovascular risk factors in children after Kawasaki disease: implications for premature atherosclerosis. J Am Coll Cardiol 43(1):120–124. https://doi.org/10.1016/j.jacc.2003.08.030

    Article  PubMed  Google Scholar 

  31. Noto N, Okada T, Yamasuge M, Taniguchi K, Karasawa K, Ayusawa M, Sumitomo N, Harada K (2001) Noninvasive assessment of the early progression of atherosclerosis in adolescents with Kawasaki disease and coronary artery lesions. Pediatrics 107(5):1095–1099. https://doi.org/10.1542/peds.107.5.1095

    Article  CAS  PubMed  Google Scholar 

  32. Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catapano A, Tramontana S, Perticone F, Naccarato P, Camici P, Picano E, Cortigiani L, Bevilacqua M, Milazzo L, Cusi D, Barlassina C, Sarzi-Puttini P, Turiel M (2010) From endothelial dysfunction to atherosclerosis. Autoimmun Rev 9:830–834. https://doi.org/10.1016/j.autrev.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  33. Del Papa N, Guidali L, Sala A, Buccellati C, Khamashta MA, Ichikawa K, Koike T, Balestrieri G, Tincani A, Hughes GR, Meroni PL (1997) Endothelial cells as target for antiphospholipid antibodies. Human polyclonal and monoclonal anti-beta 2-glycoprotein I antibodies react in vitro with endothelial cells through adherent beta 2-glycoprotein I and induce endothelial activation. Arthritis Rheum 40:551–561. https://doi.org/10.1002/art.1780400322

    Article  PubMed  Google Scholar 

  34. van Leeuwen M, Gijbels MJ, Duijvestijn A, Smook M, van de Gaar MJ, Heeringa P, de Winther MPJ, Cohen Tervaert JW (2008) Accumulation of myeloperoxidase positive neutrophils in atherosclerotic lesions in LDLR–/– mice. Arterioscler Thromb Vasc Biol 28(1):84–89. https://doi.org/10.1161/ATVBAHA.107.154807

    Article  CAS  PubMed  Google Scholar 

  35. Ducroux C, Di Meglio L, Loyau S, Delbosc S, Boisseau W, Deschildre C et al (2008) Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 49(3):754–757. https://doi.org/10.1161/STROKEAHA.117.019896

    Article  Google Scholar 

  36. Laridan E, Denorme F, Desender L, François O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232. https://doi.org/10.1002/ana.24993

    Article  CAS  PubMed  Google Scholar 

  37. Okada Y, Copeland BR, Mori E, Tung MM, Thoms WS, del Zoppo GJ (1994) P-Selectin and intercellular adhesion molecule-1 expression after brain ischemia reperfusion. Stroke 25(1):202–211. https://doi.org/10.1161/01.str.25.1.202

    Article  CAS  PubMed  Google Scholar 

  38. Zhang RL, Chopp M, Zhang ZG, Phillips ML, Rosenbloom CL, Cruz R, Manning A (1996) E-selectin in focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 16(6):1126–1136. https://doi.org/10.1097/00004647-199611000-00006

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Siren AL, Liu Y, Yue TL, Barone FC, Feuerstein GZ (1994) Upregulation of intercellular adhesion molecule 1 (ICAM-1) on brain microvascular endothelial cells in rat ischemic cortex. Brain Res Mol Brain Res 26(1–2):61–68. https://doi.org/10.1016/0169-328x(94)90074-4

    Article  CAS  PubMed  Google Scholar 

  40. Myers D, Farris D, Hawley A, Wrobleski S, Chapman A, Stoolman L, Knibbs R, Strieter R, Wakefield T (2002) Selectins influence thrombosis in a mouse model of experimental deep vein thrombosis. J Surg Res 108(2):212–221. https://doi.org/10.1006/jsre.2002.6552

    Article  CAS  PubMed  Google Scholar 

  41. Lee YJ, Jy W, Horstman LL, Janania J, Reyes Y, Kelley RE, Ahn YS (1993) Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 72(4):295–304. https://doi.org/10.1016/0049-3848(93)90138-e

    Article  CAS  PubMed  Google Scholar 

  42. He Z, Tang Y, Qin C (2017) Increased circulating leukocyte-derived microparticles in ischemic cerebrovascular disease. Thromb Res 154:19–25. https://doi.org/10.1016/j.thromres.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  43. Kandiyil N, MacSweeney ST, Heptinstall S, May J, Fox SC, Auer DP (2019) Circulating microparticles in patients with symptomatic carotid disease are related to embolic plaque activity and recent cerebral ischaemia. Cerebrovasc Dis Extra 9(1):9–18. https://doi.org/10.1159/000495942

    Article  PubMed  PubMed Central  Google Scholar 

  44. Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, GaffneyJ, (2000) Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patient with acute ischemic stroke. Stroke 31(8):1863–1870. https://doi.org/10.1161/01.str.31.8.1863

    Article  CAS  PubMed  Google Scholar 

  45. Fan L, Zhang H, Cai J, Yang L, Liu B, Wei D, Yu J, Fan J, Song L, Ma W, Zhou X, Wu H, Lou Y (2019) Clinical course and prognostic factors of childhood Takayasu’s arteritis: over 15-year comprehensive analysis of 101 patients. Arthritis Res Ther 21(1):31. https://doi.org/10.1186/s13075-018-1790-x

    Article  PubMed  PubMed Central  Google Scholar 

  46. Held M, Sestan M, Jelusic M (2022) Obesity as a comorbidity in children and adolescents with autoimmune rheumatic diseases. Rheumatol Int. https://doi.org/10.1007/s00296-022-05238-6

    Article  PubMed  Google Scholar 

  47. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, Hoffman GS (1994) Takayasu arteritis. Ann Intern Med 120(11):919–929. https://doi.org/10.7326/0003-4819-120-11-199406010-00004

    Article  CAS  PubMed  Google Scholar 

  48. Brunner J, Feldman BM, Tyrrell PN, Kuemmerle-Deschner JB, Zimmerhackl LB, Gassner I, Benseler SM (2010) Takayasu arteritis in children and adolescents. Rheumatology (Oxford) 49:1806–1814. https://doi.org/10.1093/rheumatology/keq167

    Article  PubMed  Google Scholar 

  49. Aeschlimann FA, Barra L, Alsolaimani R, Benseler SM, Hebert D, Khalidi N, Laxer RM, Noone D, Pagnoux C, Twilt M, Yeung RSM (2019) Presentation and disease course of childhood-onset versus adult-onset Takayasu arteritis. Arthritis Rheumatol 71:315–323. https://doi.org/10.1002/art.40690

    Article  PubMed  Google Scholar 

  50. Szugye HS, Zeft AS, Spalding SJ (2014) Takayasu arteritis in the paediatric population: a contemporary United States-based single center cohort. Pediatr Rheumatol Online J 12:21. https://doi.org/10.1186/1546-0096-12-21

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sönmez HE, Demir F, Özdel S, Gül Karadağ Ş, Bağlan E, Bülbül M, Çakan M, Aktay Ayaz N, Sözeri B (2021) Neuroimaging of children with Takayasu arteritis. J Child Neurol 36(8):642–647. https://doi.org/10.1177/0883073821991287

    Article  PubMed  Google Scholar 

  52. Goel R, Kumar TS, Danda D, Joseph G, Jeyaseelan V, Surin AK, Bacon P (2014) Childhood-onset Takayasu arteritis-experience from a tertiary care center in South India. J Rheumatol 41:1183–1189. https://doi.org/10.3899/jrheum.131117

    Article  PubMed  Google Scholar 

  53. Danda D, Goel R, Joseph G, Kumar ST, Nair A, Ravindran R, Jeyaseelen L, Merkel PA, Grayson PC (2021) Clinical course of 602 patients with Takayasu’s arteritis: comparison between childhood-onset versus adult onset disease. Rheumatology (Oxford) 60(5):2246–2255. https://doi.org/10.1093/rheumatology/keaa569

    Article  CAS  PubMed  Google Scholar 

  54. Jales-Neto LH, Levy-Neto M, Bonfa E, de Carvalho JF, Pereira RMR (2010) Juvenile-onset Takayasu arteritis: peculiar vascular involvement and more refractory disease. Scand J Rheumatol 39:506–510. https://doi.org/10.3109/03009741003742730

    Article  CAS  PubMed  Google Scholar 

  55. Eleftheriou D, Varnier G, Dolezalova P, McMahon AM, Al-Obaidi M, Brogan PA (2015) Takayasu arteritis in childhood: retrospective experience from a tertiary referral centre in the United Kingdom. Arthritis Res Ther 17(1):36. https://doi.org/10.1186/s13075-015-0545-1

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jordan NP, Bezanahary H, D’Cruz DP (2015) Increased risk of vascular complications in Takayasu’s arteritis patients with positive lupus anticoagulant. Scand J Rheumatol 44(3):211–214. https://doi.org/10.3109/03009742.2014.964305

    Article  CAS  PubMed  Google Scholar 

  57. Alves NR, Magalhães CM, Almeida Rde F, Santos RC, Gandolfi L, Pratesi R (1992) Prospective study of Kawasaki disease complications: review of 115 cases. Rev Assoc Med Bras 57(3):295–300

    Article  Google Scholar 

  58. Eleftheriou D, Dillon MJ, Tullus K, Marks SD, Pilkington CA, Roebuck DJ, Klein NJ, Brogan PA (2013) Systemic polyarteritis nodosa in the young: a single-center experience over thirty-two years. Arthritis Rheum 65(9):2476–2485. https://doi.org/10.1002/art.38024

    Article  CAS  PubMed  Google Scholar 

  59. Falcini F, La Torre F, Vittadello F, Rigante D, Martini G, Corona F et al (2014) Clinical overview and outcome in a cohort of children with polyarteritis nodosa. Clin Exp Rheumatol 32(3 Suppl 82):134–137

    Google Scholar 

  60. Mora P, Menozzi C, Orsoni JG, Rubino P, Ruffini L, Carta A (2013) Neuro-Behcet’s disease in childhood: a focus on the neuro-ophthalmological features. Orphanet J Rare Dis 8:18. https://doi.org/10.1186/1750-1172-8-18

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu X, Zhou K, Hua Y, Wu M, Liu L, Shao S, Wang C (2020) Neurological involvement in Kawasaki disease: a retrospective study. Pediatr Rheumatol Online J 18(1):61. https://doi.org/10.1186/s12969-020-00452-7

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ozen S, Anton J, Arisoy N, Bakkaloglu A, Besbas N, Brogan P et al (2004) Juvenile polyarteritis: results of a multicenter survey of 110 children. J Pediatr 145(4):517–522. https://doi.org/10.1016/j.jpeds.2004.06.046

    Article  PubMed  Google Scholar 

  63. Liu A, Zhang H (2012) Detection of antiphospholipid antibody in children with Henoch-Schönlein purpura and central nervous system involvement. Pediatr Neurol 47(3):167–170. https://doi.org/10.1016/j.pediatrneurol.2012.05.024

    Article  CAS  PubMed  Google Scholar 

  64. Ostergaard JR, Storm K (1991) Neurologic manifestations of Schönlein-Henoch purpura. Acta Paediatr Scand 80(3):339–342. https://doi.org/10.1111/j.1651-2227.1991.tb11859.x

    Article  CAS  PubMed  Google Scholar 

  65. Tütüncü Toker R, Bodur M, Bican Demir A, Okan MS (2022) Neuro-Behçet is a rare disease but should be considered in all kinds of neurological findings, even in childhood. Clin Exp Rheumatol 40(8):1588–1592

    PubMed  Google Scholar 

  66. Koné-Paut I, Yurdakul S, Bahabri SA, Shafae N, Ozen S, Ozdogan H, Ozdogan H, Bernard JL (1998) Clinical features of Behçet’s disease in children: an international study of 86 cases. J Pediatr 132(4):721–725. https://doi.org/10.1016/s0022-3476(98)70368-3

    Article  PubMed  Google Scholar 

  67. Jelusic M, Vikic-Topic M, Batinic D, Milosevic D, Malenica B, Malcic I (2013) Polyarteritis nodosa in Croatian children: a retrospective study over the last 20 years. Rheumatol Int 33(12):3087–3090. https://doi.org/10.1007/s00296-012-2595-x

    Article  PubMed  Google Scholar 

  68. Shah S, Hata J (2021) A rare and severe presentation of Henoch-Schönlein purpura in an adolescent with crescentic glomerulonephritis, arrhythmia, acute gastrointestinal bleed, and neurological complications. Cureus 29;13(3):e14169. https://doi.org/10.7759/cureus.14169.

  69. Arslan H, Yavuz A, Arslan A, Aycan A (2018) Posterior reversible encephalopathy syndrome in IgA vasculitis: neuroimaging of a 14-year-old child. Neurol Neurochir Pol 52(1):107–111

    Article  PubMed  Google Scholar 

  70. Demir S, Acari C, Basaran O, Sag E, Oguz KK, Bilginer Y, Ünsal SE, Ozen S (2019) Paediatric Behcet’s disease with sinus venous thrombosis: experience from three centres from Turkey. Clin Exp Rheumatol 121(6):147–151

    Google Scholar 

  71. Bulun A, Topaloglu R, Duzova A, Saatci I, Besbas N, Bakkaloglu A (2001) Ataxia and peripheral neuropathy: rare manifestations in Henoch-Schönlein purpura. Pediatr Nephrol 16(12):1139–1141. https://doi.org/10.1007/s004670100048

    Article  CAS  PubMed  Google Scholar 

  72. Marsili M, Marzetti V, Lucantoni M, Lapergola G, Gattorno M, Chiarelli F, Breda L (2016) Autoimmune sensorineural hearing loss as presenting manifestation of paediatric Behçet disease responding to adalimumab: a case report. Ital J Pediatr 42(1):81. https://doi.org/10.1186/s13052-016-0291-2

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ogawa O, Watanabe R, Shimizu H, Masani F (2011) Hypertensive crisis in young woman with Takayasu arteritis. Intern Med 50(18):1963–1970. https://doi.org/10.2169/internalmedicine.50.5572

    Article  PubMed  Google Scholar 

  74. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC et al (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on rheumatic fever, endocarditis and Kawasaki disease, Council on cardiovascular disease in the young. American Heart Association. Circulation 110(17):2747–2771. https://doi.org/10.1161/01.CIR.0000145143.19711.78

    Article  PubMed  Google Scholar 

  75. Makino N, Nakamura Y, Yashiro M, Kosami K, Matsubara Y, Ae R, Aoyama Y, Yanagawa H (2019) The Nationwide epidemiologic survey of Kawasaki disease in Japan, 2015–2016. Pediatr Int 61(4):397–403. https://doi.org/10.1111/ped.13809

    Article  PubMed  Google Scholar 

  76. Okanishi T, Enoki H (2012) Transient subcortical high-signal lesions in Kawasaki syndrome. Pediatr Neurol  47(4):295–298

    Article  PubMed  Google Scholar 

  77. Suda K, Matsumura M, Ohta S (2003) Kawasaki disease complicated by cerebral infarction. Cardiol Young 13(1):103–105. https://doi.org/10.1017/s1047951103000179

    Article  PubMed  Google Scholar 

  78. Fujiwara S, Yamano T, Hattori M, Fujiseki Y, Shimada, (1992) Asymptomatic cerebral infarction in Kawasaki disease. Pediatr Neurol 883:235–236. https://doi.org/10.1016/0887-8994(92)90077-c

    Article  Google Scholar 

  79. Bailie NM, Hensey OJ, Ryan S, Allcut D, King MD (2001) Bilateral subdural collections-an unusual feature of possible Kawasaki disease. Eur J Paediatr Neurol 5(2):79–81. https://doi.org/10.1053/ejpn.2001.0469

    Article  CAS  PubMed  Google Scholar 

  80. Muneuchi J, Kusuhara K, Kanaya Y, Ohno T, Furuno K, Kira R, Mihara F, Hara T (2006) Magnetic resonance studies of brain lesions in patients with Kawasaki disease. Brain Dev 28(1):30–33. https://doi.org/10.1016/j.braindev.2005.04.003

    Article  PubMed  Google Scholar 

  81. Ahn JH, Phi JH, Kang HS, Wang KC, Cho BK, Lee JY, Kim GB, Kim SK (2010) A ruptured middle cerebral artery aneurysm in a 13-month old boy with Kawasaki disease. J Neurosurg Pediatr 6(2):150–153. https://doi.org/10.3171/2010.5.PEDS1012

    Article  PubMed  Google Scholar 

  82. Ichiyama T, Nishikawa M, Hayashi T, Koga M, Tashiro N, Furukawa S (1998) Cerebral hypoperfusion during acute Kawasaki disease. Stroke 29(7):1320–1321. https://doi.org/10.1161/01.str.29.7.1320

    Article  CAS  PubMed  Google Scholar 

  83. Cheung YF, Wong SJ, Ho MH (2007) Relationship between carotid intima-media thickness and arterial stiffness in children after Kawasaki disease. Arch Dis Child 92(1):43–47. https://doi.org/10.1136/adc.2006.096628

    Article  PubMed  Google Scholar 

  84. Lee JJY, Feldman BM, McCrindle BW, Li P, Yeung RS, Widdifield, (2022) Evaluating the time-varying risk of hypertension, cardiac events, and mortality following Kawasaki disease diagnosis. Pediatr Res. https://doi.org/10.1038/s41390-022-02273-8

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lin CH, Li JN, Lee IC, Chou IC, Lin WD, Lin MC, Hong SY (2022) Kawasaki disease may increase the risk of subsequent cerebrovascular disease. Stroke 53(4):1256–1262. https://doi.org/10.1161/STROKEAHA

    Article  CAS  PubMed  Google Scholar 

  86. Ahn SS, Han M, Yoo J, Park YB, Jung I, Lee SW (2021) Risk of stroke in systemic necrotizing vasculitis: a nationwide study using National Claims database. Front Immunol 12:629902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ozen S, Batu ED, Taşkiran EZ, Özkara HA, Ünal Ş, Güleray N et al (2020) A monogenic disease with a variety of phenotypes: deficiency of adenosine deaminase 2. J Rheumatol 47(1):117–125. https://doi.org/10.3899/jrheum.181384

    Article  CAS  PubMed  Google Scholar 

  88. Caorsi R, Penco F, Grossi A, Insalaco A, Omenetti A, Alessio M et al (2017) ADA2 deficiency (DADA2) as an unrecognized cause of early onset polyarteritis nodosa and stroke: a multicentre national study. Ann Rheum Dis 76(10):1648–1656. https://doi.org/10.1136/annrheumdis-2016-210802

    Article  CAS  PubMed  Google Scholar 

  89. Barron KS, Aksentijevich I, Deuitch NT, Stone DL, Hoffmann P, Videgar-Laird R et al (2022) The spectrum of the deficiency of adenosine deaminase 2: an observational analysis of a 60 patient cohort. Front Immunol 12:811473

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cooray S, Omyinmi E, Hong Y, Papadopoulou C, Harper L, Al-Abadi E et al (2021) Anti-tumor necrosis factor treatment for the prevention of ischaemic events in patients with deficiency of adenosine deaminase 2 (DADA2). Rheumatology (Oxford) 60(9):4373–4378

    Article  CAS  PubMed  Google Scholar 

  91. Piram M, Maldini C, Biscardi S, De Suremain N, Orzechowski C, Georget E, Regnard D, Koné-Paut I, Mahr A (2017) Incidence of IgA vasculitis in children estimated by four-source capture-recapture analysis: a population-based study. Rheumatology 56(8):1358–1366. https://doi.org/10.1093/rheumatology/kex158

    Article  PubMed  Google Scholar 

  92. Sapina M, Frkovic M, Sestan M, Srsen S, Ovuka A, Batnozic Varga M, Kramaric K, Brdaric D, Milas K, Gagro A, Jelusic M (2021) Geospatial clustering of childhood IgA vasculitis and IgA vasculitis-associated vasculitis. Ann Rheum Dis 80(5):610–616. https://doi.org/10.1136/annrheumdis-2020-218649

    Article  CAS  PubMed  Google Scholar 

  93. Sestan M, Kifer N, Frkovic M, Sapina S, Srsen S, Batnozic Varga M et al (2021) Gastrointestinal involvement and its association with the risk for nephritis in IgA vasculitis. Ther Adv Musculoskelet Dis 13:1759720X211024828. https://doi.org/10.1177/1759720X211024828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kifer N, Bulimbasic S, Sestan M, Held M, Kifer D, Srsen S et al (2022) Semiquantitative classification (SQC) and Oxford classifications predict poor renal outcome better than The International Study of Kidney Disease in Children (ISKDC) and Haas in patients with IgAV nephritis: a multicenter study. J Nephrol. https://doi.org/10.1007/s40620-022-01545-0

    Article  PubMed  Google Scholar 

  95. Garzoni L, Vanoni F, Rizzi M, Simonetti GD, Goeggel Simonetti B, Ramelli GP, Bianchetti MG (2009) Nervous system dysfunction in Henoch-Schonlein syndrome: systematic review of the literature. Rheumatology (Oxford) 48(12):1524–1529. https://doi.org/10.1093/rheumatology/kep282

    Article  PubMed  Google Scholar 

  96. Sokol DK, McIntyre JA, Short RA, Gutt J, Wagenknecht DR, Biller J, Garg B (2000) Henoch-Schönlein purpura and stroke: antiphosphatidylethanolamine antibody in CSF and serum. Neurology 55(9):1379–1381. https://doi.org/10.1212/wnl.55.9.1379

    Article  CAS  PubMed  Google Scholar 

  97. Zheng Y, Zhang Y, Cai M, Lai N, Chen Z, Ding M (2019) Central nervous system involvement in ANCA-associated vasculitis: what neurologists need to know. Front Neurol 9:1166. https://doi.org/10.3389/fneur.2018.01166

    Article  PubMed  PubMed Central  Google Scholar 

  98. Calatroni M, Consonni F, Allinovi M, Bettiol A, Jawa N, Fiasella S et al (2021) Prognostic factors and long-term outcome with ANCA-associated kidney vasculitis in childhood. Clin J Am Soc Nephrol 16(7):1043–1051. https://doi.org/10.2215/CJN.19181220

    Article  PubMed  PubMed Central  Google Scholar 

  99. Belostotsky VM, Shah V, Dillon MJ (2002) Clinical features in 17 paediatric patients with Wegener granulomatosis. Pediatr Nephrol 17(9):754–761. https://doi.org/10.1007/s00467-002-0914-2

    Article  PubMed  Google Scholar 

  100. Cabral DA, Canter DL, Muscal E, Nanda K, Wahezi DM, Spalding SJ et al (2016) Comparing presenting clinical features in 48 children with microscopic polyangiitis to 183 children who have granulomatosis with polyangiitis (Wegener’s): an ARChiVe cohort study. Arthritis Rheumatol 68:2514–2526. https://doi.org/10.1002/art.39729

    Article  CAS  PubMed  Google Scholar 

  101. Fina A, Dubus JC, Tran A, Derelle J, Reix P, Fayon M et al (2018) Eosinophilic granulomatosis with polyangiitis in children: data from the French RespiRare® cohort. Pediatr Pulmonol 53(12):1640–1650. https://doi.org/10.1002/ppul.24089

    Article  PubMed  Google Scholar 

  102. Gendelman S, Zeft A, Spalding SJ (2013) Childhood-onset eosinophilic granulomatosis with polyangiitis (formerly Churg-Strauss syndrome): a contemporary single-center cohort. J Rheumatol 4086:929–935

    Article  Google Scholar 

  103. Sun L, Wang H, Jiang X, Mo Y, Yue Z, Huang L, Liu T (2014) Clinical and pathological features of microscopic polyangiitis in 20 children. J Rheumatol 41(8):1712–1719. https://doi.org/10.3899/jrheum.131300

    Article  PubMed  Google Scholar 

  104. Iglesias E, Eleftheriou D, Mankad K, Prabhakar P, Brogan PA (2014) Microscopic polyangiitis presenting with hemorrhagic stroke. J Child Neurol 29(8):NP1-4. https://doi.org/10.1177/0883073813488661

    Article  PubMed  Google Scholar 

  105. Koné-Paut I, Shahram F, Darce-Bello M, Cantarini L, Cimaz R, Gattorno M et al (2016) Consensus classification criteria for paediatric Behçet’s disease from a prospective observational cohort: PEDBD. Ann Rheum Dis 75:958–964. https://doi.org/10.1136/annrheumdis-2015-208491

    Article  PubMed  Google Scholar 

  106. Batu ED, Sönmez HE, Sözeri B, Aviel YB, Bilginer Y, Ozen S (2017) The performance of different classification criteria in paediatric Behçet’s disease. Clin Exp Rheumatol 108(6):119–123

    Google Scholar 

  107. Kalra S, Silman A, Akman-Demir G, Bohlega S, Borhani-Haghighi A, Constantinescu CS et al (2014) Diagnosis and management of neuro-Behçet’s disease: international consensus recommendations. J Neurol 261(9):1662–1676. https://doi.org/10.1007/s00415-013-7209-3

    Article  PubMed  Google Scholar 

  108. Metreau-Vastel J, Mikaeloff Y, Tardieu M, Koné-Paut I, Tran TA (2010) Neurological involvement in paediatric Behçet’s disease. Neuropaediatrics 41(5):228–234. https://doi.org/10.1055/s-0030-1269909

    Article  CAS  Google Scholar 

  109. Saadoun D, Wechsler B, Desseaux K, Thi Huong DL, Amoura Z, Resche-Rigon M, Cacoub P (2010) Mortality in Behçet’s disease. Arthritis Rheum 62(9):2806–2812. https://doi.org/10.1002/art.27568

    Article  CAS  PubMed  Google Scholar 

  110. Chuang KW, Chang HC (2022) Risk of ischaemic heart diseases and stroke in Behçet disease: a systematic review and meta-analysis. Ur J Clin Invest 52(8)

    Google Scholar 

  111. de Graeff N, Groot N, Ozen S, Eleftheriou D, Avcin T, Bader-Meunier B et al (2019) European consensus-based recommendations for the diagnosis and treatment of Kawasaki disease - the SHARE initiative. Rheumatology (Oxford) 58(4):672–682. https://doi.org/10.1093/rheumatology/key344

    Article  CAS  PubMed  Google Scholar 

  112. Ozen S, Marks SD, Brogan P, Groot N, de Graeff N, Avcin T et al (2019) European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis—the SHARE initiative. Rheumatology (Oxford) 58(9):1607–1616. https://doi.org/10.1093/rheumatology/kez041

    Article  CAS  PubMed  Google Scholar 

  113. de Graeff N, Groot N, Brogan P, Ozen S, Avcin T, Bader-Meunier B et al (2020) European consensus-based recommendations for the diagnosis and treatment of rare paediatric vasculitides—the SHARE initiative. Rheumatology (Oxford) 59(4):919. https://doi.org/10.1093/rheumatology/keaa057

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MH reviewed the literature, analyzed the data, and wrote much of the manuscript. MS and NK reviewed the literature and wrote parts of the manuscript. MJ contributed to the conception and design of the work; she reviewed and revised the manuscript and supervised the work. All authors read and approved the final manuscript to be published. All co-authors are full responsible for all aspects of the study and the final manuscript. All authors accept responsibility for the accuracy and integrity of the final manuscript as submitted.

Corresponding author

Correspondence to Marija Jelusic.

Ethics declarations

Ethical approval

The manuscript does not contain clinical studies or patient data.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Disclosures

None.

Disclaimer

No part of this review is copied or published elsewhere in whole or in part in any languages.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Messages

• Pediatric vasculitides are rare, but possible cause of stroke in children and adolescents

• Endothelial injury plays central role in both pediatric vasculitides and cerebrovascular diseases (CVDs), including stroke

• The healthcare approach to a pediatric vasculitis patient who developed CVD includes three key steps: vasculitis specific treatment, CVD management and implementation of preventive measures

Part of the Topical Collection entitled ‘Cardiovascular Issues in Rheumatic Diseases

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Held, M., Sestan, M., Kifer, N. et al. Cerebrovascular involvement in systemic childhood vasculitides. Clin Rheumatol 42, 2733–2746 (2023). https://doi.org/10.1007/s10067-023-06552-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06552-5

Keywords

Navigation