Skip to main content

Advertisement

Log in

Association of a miRNA-binding site polymorphism in IL-16 gene with disease risk and clinical characteristics of rheumatoid arthritis and systemic lupus erythematosus

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

/objectives.

Single nucleotide polymorphisms (SNPs) located at the 3′-UTR region of the target genes of microRNAs (miRNAs) can dysregulate their expression via disrupting the binding site of miRNAs. Interleukin-16 (IL-16) is involved in the pathogenesis of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). In the current study, we assessed the possible association between rs1131445 polymorphism in IL-16 gene with risk and clinical characteristics of RA and SLE in the Iranian population.

Methods

In this case–control study, 120 patients with RA, 120 patients with SLE, and 120 unrelated healthy subjects were collected to estimate rs1131445 (T > C) polymorphism in IL-16 gene using real-time PCR high-resolution melting (HRM) method.

Results

Our results demonstrated considerable associations between TC genotype and C allele of rs1131445 with enhanced risk of RA (ORfor TC genotype = 3.01; 95%CI [1.667–5.526], P < 0.001; ORfor C allele = 1.96; 95%CI [1.314–2.941], P < 0.001). Besides, there was a marginal association between CC genotype and increased risk of RA (P: 0.031). However, there was an insignificant correlation between genotypes and allele frequencies of rs1131445 with incidence risk of SLE (P > 0.05). Moreover, stratification analysis indicated that the C allele in rs1131445 was linked with disease activity–associated laboratory parameters such as CRP and ESR in both RA and SLE patients, as well as the higher incidence of neurological symptoms in SLE subjects (P < 0.05).

Conclusion

These results proposed a significant association between IL-16 polymorphism and augmented risk of RA and clinical characteristics of RA and SLE.

Key Points

• Single nucleotide polymorphism (rs1131445) in miRNA -binding sites which is located in 3′ˊUTR of the IL-16 gene could be associated with RA and SLE risk by dysregulation of IL-16 expression.

• Our findings proposed a significant association between IL-16 polymorphism and augmented risk of RA and clinical characteristics of RA and SLE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23(7):615–635. https://doi.org/10.1016/j.molmed.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scherer HU, Häupl T, Burmester GR (2020) The etiology of rheumatoid arthritis. J autoimmun 110:102400

    Article  CAS  Google Scholar 

  3. Goodnow CC (2007) Multistep pathogenesis of autoimmune disease. Cell 130(1):25–35

    Article  CAS  Google Scholar 

  4. Caliskan M, Brown CD, Maranville JC (2021) A catalog of GWAS fine-mapping efforts in autoimmune disease. Am J of Hum Genet 108(4):549–563. https://doi.org/10.1016/j.ajhg.2021.03.009

    Article  CAS  Google Scholar 

  5. Ye J, Gillespie KM, Rodriguez S (2018) Unravelling the roles of susceptibility loci for autoimmune diseases in the post-GWAS era. Genes (Basel) 9(8):377. https://doi.org/10.3390/genes9080377

    Article  CAS  Google Scholar 

  6. Kochi Y (2016) Genetics of autoimmune diseases: perspectives from genome-wide association studies. Int Immunol 28(4):155–161. https://doi.org/10.1093/intimm/dxw002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cruikshank W, Center D (1982) Modulation of lymphocyte migration by human lymphokines. II. Purification of a lymphotactic factor (LCF). Journal Immunol 128(6):2569–2574

    CAS  Google Scholar 

  8. Lee S, Kaneko H, Sekigawa I, Tokano Y, Takasaki Y, Hashimoto H (1998) Circulating interleukin-16 in systemic lupus erythematosus. Br J Rheumatol 37(12):1334–1337

    Article  CAS  Google Scholar 

  9. Yoon T, Pyo JY, Ahn SS, Song JJ, Park Y-B, Lee S-W (2020) Serum interleukin-16 significantly correlates with the Vasculitis Damage Index in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Res Ther 22(1):73. https://doi.org/10.1186/s13075-020-02172-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho M-L, Jung YO, Kim K-W, Park M-K, Oh H-J, Ju J-H, Cho Y-G, Min J-K, Kim S-I, Park S-H (2008) IL-17 induces the production of IL-16 in rheumatoid arthritis. Exp Mol Med 40(2):237–245

    Article  CAS  Google Scholar 

  11. Kawabata K, Makino T, Makino K, Kajihara I, Fukushima S, Ihn H (2020) IL-16 expression is increased in the skin and sera of patients with systemic sclerosis. Rheumatology 59(3):519–523

    CAS  PubMed  Google Scholar 

  12. Lard LR, Roep BO, Toes RE, Huizinga TW (2004) Enhanced concentrations of interleukin 16 are associated with joint destruction in patients with rheumatoid arthritis. J Rheumatol 31(1):35–39

    CAS  PubMed  Google Scholar 

  13. Blaschke S, Schulz H, Schwarz G, Blaschke V, Müller GA, Reuss-Borst M (2001) Interleukin 16 expression in relation to disease activity in rheumatoid arthritis. J Rheumatol 28(1):12–21

    CAS  PubMed  Google Scholar 

  14. Franz JK, Kolb SA, Hummel KM, Lahrtz F, Neidhart M, Aicher WK, Pap T, Gay RE, Fontana A, Gay S (1998) Interleukin-16, produced by synovial fibroblasts, mediates chemoattraction for CD4+ T lymphocytes in rheumatoid arthritis. Eur J Immunol 28(9):2661–2671

    Article  CAS  Google Scholar 

  15. Murota A, Suzuki K, Kassai Y, Miyazaki T, Morita R, Kondo Y, Takeshita M, Niki Y, Yoshimura A, Takeuchi T (2016) Serum proteomic analysis identifies interleukin 16 as a biomarker for clinical response during early treatment of rheumatoid arthritis. Cytokine 78:87–93

    Article  CAS  Google Scholar 

  16. Sekigawa I, Matsushita M, Lee S, Maeda N, Ogasawara H, Kaneko H, Iida N, Hashimoto H (2001) A possible pathogenic role of CD8+ T cells and their derived cytokine, IL-16. SLE Autoimmunity 33(1):37–44

    Article  CAS  Google Scholar 

  17. Lard L, Roep B, Verburgh C, Zwinderman A, Huizinga T (2002) Elevated IL-16 levels in patients with systemic lupus erythematosus are associated with disease severity but not with genetic susceptibility to lupus. Lupus 11(3):181–185

    Article  CAS  Google Scholar 

  18. Liang D, Shen N (2012) MicroRNA involvement in lupus: the beginning of a new tale. Curr Opin Rheumatol 24(5):489–498. https://doi.org/10.1097/BOR.0b013e3283563363

    Article  CAS  PubMed  Google Scholar 

  19. Ceribelli A, Satoh M, Chan EKL (2012) MicroRNAs and autoimmunity. Curr Opin Immunol 24(6):686–691. https://doi.org/10.1016/j.coi.2012.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moran-Moguel MC, Petarra-Del Rio S, Mayorquin-Galvan EE, Zavala-Cerna MG (2018) Rheumatoid arthritis and miRNAs: a critical review through a functional view. J Immunol Res 2018:2474529–2474529. https://doi.org/10.1155/2018/2474529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  Google Scholar 

  22. Karimzadeh MR, Zarin M, Ehtesham N, Khosravi S, Soosanabadi M, Mosallaei M, Pourdavoud P (2020) MicroRNA binding site polymorphism in inflammatory genes associated with colorectal cancer: literature review and bioinformatics analysis. Cancer Gene Ther 27(10):739–753

    Article  CAS  Google Scholar 

  23. de Almeida, R. C., Chagas, V. S., Castro, M., & Petzl-Erler, M. L. (2018). Integrative Analysis Identifies Genetic Variants Associated With Autoimmune Diseases Affecting Putative MicroRNA Binding Sites. Frontiers in genetics, 9, 139. https://doi.org/10.3389/fgene.2018.00139

    Article  Google Scholar 

  24. Liu C, Zhang F, Li T, Lu M, Wang L, Yue W, Zhang D (2012) MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13(1):661. https://doi.org/10.1186/1471-2164-13-661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z (2012) miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3’UTRs of human genes. BMC Genomics 13(1):1–7

    Article  Google Scholar 

  26. Mi Y, Wang L, Zong L, Pei M, Lu Q, Huang P (2014) Genetic variants in microRNA target sites of 37 selected cancer-related genes and the risk of cervical cancer. PloS one 9(1):e86061

    Article  Google Scholar 

  27. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, Smolen JS, Wofsy D, Boumpas DT, Kamen DL (2019) 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis & rheumatol 71(9):1400–1412

    Article  Google Scholar 

  28. Lucena-Aguilar G, Sánchez-López AM, Barberán-Aceituno C, Carrillo-Avila JA, López-Guerrero JA, Aguilar-Quesada R (2016) DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and Biobanking 14(4):264–270

    Article  CAS  Google Scholar 

  29. Bhattacharya A, Ziebarth JD, Cui Y (2014) PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 42(Database issue):D86–D91. https://doi.org/10.1093/nar/gkt1028

    Article  CAS  PubMed  Google Scholar 

  30. Esmaeilzadeh E, Saghi M, Hassani M, Davar S, Alani B, Pakzad B, Ghobakhloo S, Khosravi S, Sabet MN (2021) Strong association of common variants in the miRNA-binding site of NOD2 gene with clinicopathological characteristics and disease activity of systemic lupus erythematosus. Clin Rheumatol 40(11):4559–4567

    Article  Google Scholar 

  31. Lin P-C, Liu T-C, Chang C-C, Chen Y-H, Chang J-G (2012) High-resolution melting (HRM) analysis for the detection of single nucleotide polymorphisms in microRNA target sites. Clin Chim Acta 413(13–14):1092–1097

    Article  CAS  Google Scholar 

  32. Mathy N, Scheuer W, Lanzendörfer M, Honold K, Ambrosius D, Norley S, Kurth R (2000) Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology 100(1):63–69

    Article  CAS  Google Scholar 

  33. Skundric DS, Cruikshank WW, Montgomery PC, Lisak RP, Tse HY (2015) Emerging role of IL-16 in cytokine-mediated regulation of multiple sclerosis. Cytokine 75(2):234–248. https://doi.org/10.1016/j.cyto.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  34. Skundric DS, Cruikshank WW, Drulovic J (2015) Role of IL-16 in CD4+ T cell-mediated regulation of relapsing multiple sclerosis. J Neuroinflammation 12(1):78. https://doi.org/10.1186/s12974-015-0292-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawabata K, Makino T, Makino K, Kajihara I, Fukushima S, Ihn H (2020) IL-16 expression is increased in the skin and sera of patients with systemic sclerosis. Rheumatology (Oxford) 59(3):519–523. https://doi.org/10.1093/rheumatology/kez318

    Article  CAS  Google Scholar 

  36. Keates AC, Castagliuolo I, Cruickshank WW, Qiu B, Arseneau KO, Brazer W, Kelly CP (2000) Interleukin 16 is up-regulated in Crohn’s disease and participates in TNBS colitis in mice. Gastroenterology 119(4):972–982. https://doi.org/10.1053/gast.2000.18164

    Article  CAS  PubMed  Google Scholar 

  37. Seegert D, Rosenstiel P, Pfahler H, Pfefferkorn P, Nikolaus S, Schreiber S (2001) Increased expression of IL-16 in inflammatory bowel disease. Gut 48(3):326–332. https://doi.org/10.1136/gut.48.3.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niewold TB, Meves A, Lehman JS, Popovic-Silwerfeldt K, Häyry A, Söderlund-Matell T, Charlesworth CM, Madden B, Lundberg IE, Wahren-Herlenius M (2021) Proteome study of cutaneous lupus erythematosus (CLE) and dermatomyositis skin lesions reveals IL-16 is differentially upregulated in CLE. Arthritis Res Ther 23(1):1–10

    Article  Google Scholar 

  39. de Almeida RC Chagas VS Castro MAA Petzl-Erler ML (2018) Integrative analysis identifies genetic variants associated with autoimmune diseases affecting putative microRNA binding sites. Frontiers in Genetics 9 (139). https://doi.org/10.3389/fgene.2018.00139

  40. Moszyńska A, Gebert M, Collawn JF, Bartoszewski R (2017) SNPs in microRNA target sites and their potential role in human disease. Open Biol 7(4):170019. https://doi.org/10.1098/rsob.170019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alinaghi S, Chaleshi V, Ghavami SB, Balaii H, Azimzadeh P, Kadijani AA, Nourian M, Shahrokh S, Asgharian AM, Aghdaei HA (2016) Comparative evaluation of IL-16 mRNA level and rs1131445 polymorphism of IL-16 gene in peripheral blood mononuclear cells of patients with inflammatory bowel diseases. South Asian J Exp Biol 6(6):212–219

    Article  CAS  Google Scholar 

  42. Gu X-J, Cui B, Zhao Z-F, Chen H-Y, Li X-Y, Wang S, Ning G, Zhao Y-J (2008) Association of the interleukin (IL)-16 gene polymorphisms with Graves’ disease. Clin Immunol 127(3):298–302

    Article  CAS  Google Scholar 

  43. Xue H, Gao L, Wu Y, Fang W, Wang L, Li C, Li Y, Liang W, Zhang L (2009) The IL-16 gene polymorphisms and the risk of the systemic lupus erythematosus. Clin Chim Acta 403(1–2):223–225

    Article  CAS  Google Scholar 

  44. Liu F-T, Zhu P-Q, Ou YX, Liu WW, Xia GF, Luo HL (2016) Positive association between IL-16 rs1131445 polymorphism and cancer risk: a meta-analysis. Minerva Med 107(2):84–91

    PubMed  Google Scholar 

  45. Esmaeili Anvar N, Bazazzadegan N, Ohadi M, Kamali K, Khorram Khorshid H (2016) Association between interleukin 16 gene polymorphisms (rs1131445, rs4072111) and late onset of Alzheimer’s disease in Iranian patients. Iran J Ageing 11(1):64–71

    Google Scholar 

Download references

Acknowledgements

We would like to appreciate any support provided by Isfahan University of Medical Sciences and Aja University of Medical Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Nasrollahzadeh Sabet.

Ethics declarations

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinalzadeh, S., Kheradmand, N., Rasouli, G. et al. Association of a miRNA-binding site polymorphism in IL-16 gene with disease risk and clinical characteristics of rheumatoid arthritis and systemic lupus erythematosus. Clin Rheumatol 41, 2189–2196 (2022). https://doi.org/10.1007/s10067-022-06131-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06131-0

Keywords

Navigation