Skip to main content

Advertisement

Log in

Physical activity in idiopathic inflammatory myopathies: two intervention proposals based on literature review

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Idiopathic inflammatory myopathies (IIM) are rare diseases affecting skeletal muscles and leading to progressive muscle weakness and disability. Thanks to the better understanding of their pathogenesis, the management of IIM has been noteworthily implemented in recent years. Current therapeutic strategies include pharmacological and non-pharmacological interventions, among which physical exercise represents a useful option, able to ameliorate disease activity without worsening muscle inflammation. The aim of this narrative review is therefore to provide an updated overview of the benefits of physical exercise in patients with IIM and to suggest plausible training programs to be applied in patients with dermatomyositis, polymyositis, necrotizing myopathy, and inclusion body myositis. In this regard, a combined strategy mixing aerobic and resistance exercises could positively affect the pro-inflammatory and metabolic pathways occurring in skeletal muscles, while promoting muscle fiber regeneration and repair.

Key Points

•In IIM patients physical activity improves residual muscle function and prevents muscle atrophy

• The constant practice of physical activity may also lead to cardiopulmonary, endocrine and immunological benefits in IIM patients

• We formulate evidence-based protocols combining aerobic and resistance exercises to be recommended in dermatomyositis, polymyositis, necrotizing myopathy and inclusion body myositis patients

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Carstens PO, Schmidt J (2014) Diagnosis, pathogenesis and treatment of myositis: recent advances. Clin Exp Immunol 175:349–358. https://doi.org/10.1111/cei.12194

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (first of two parts). N Engl J Med. https://doi.org/10.1056/NEJM197502132920706

    Article  PubMed  Google Scholar 

  3. Satoh M, Tanaka S, Ceribelli A et al (2017) A comprehensive overview on myositis-specific antibodies: new and old biomarkers in idiopathic inflammatory myopathy. Clin Rev Allergy Immunol 52:1–19. https://doi.org/10.1007/s12016-015-8510-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghirardello A, Borella E, Beggio M et al (2014) Myositis autoantibodies and clinical phenotypes. Autoimmun Highlights 5:69–75

    Article  CAS  Google Scholar 

  5. Dalakas MC (2020) Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. Acta Myol 39:289–301. https://doi.org/10.36185/2532-1900-032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ernste FC, Reed AM (2013) Idiopathic inflammatory myopathies: current trends in pathogenesis, clinical features, and up-to-date treatment recommendations. Mayo Clin Proc 88:83–105. https://doi.org/10.1016/j.mayocp.2012.10.017

    Article  PubMed  Google Scholar 

  7. Vattemi G, Mirabella M, Guglielmi V et al (2014) Muscle biopsy features of idiopathic inflammatory myopathies and differential diagnosis. Autoimmun Highlights 5:77–85. https://doi.org/10.1007/s13317-014-0062-2

    Article  CAS  Google Scholar 

  8. Dalakas MC (2010) Inflammatory muscle diseases: a critical review on pathogenesis and therapies. Curr Opin Pharmacol 10:346–352. https://doi.org/10.1016/j.coph.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  9. Lundberg IE, Tjärnlund A, Bottai M et al (2017) 2017 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Adult and Juvenile Idiopathic Inflammatory Myopathies and Their Major Subgroups. Arthritis Rheumatol 69:2271–2282. https://doi.org/10.1002/art.40320

    Article  PubMed  PubMed Central  Google Scholar 

  10. Griggs RC, Askanas V, DiMauro S et al (1995) Inclusion body myositis and myopathies. Ann Neurol 38:705–713. https://doi.org/10.1002/ana.410380504

    Article  CAS  PubMed  Google Scholar 

  11. Pinal-Fernandez I, Casal-Dominguez M, Mammen AL (2018) Immune-mediated necrotizing myopathy. Curr Rheumatol Rep 20:21. https://doi.org/10.1007/s11926-018-0732-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shah M, Mamyrova G, Targoff IN et al (2013) The clinical phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine (Baltimore) 92:25–41. https://doi.org/10.1097/MD.0b013e31827f264d

    Article  CAS  Google Scholar 

  13. Furst DE, Amato AA, Iorga ŞR et al (2012) Epidemiology of adult idiopathic inflammatory myopathies in a U.S. managed care plan. Muscle Nerve 45:676–683. https://doi.org/10.1002/mus.23302

    Article  PubMed  Google Scholar 

  14. Tripoli A, Marasco E, Cometi L et al (2020) One year in review 2019: idiopathic inflammatory myopathies. Clin Exp Rheumatol 39:1–12

    Article  PubMed  Google Scholar 

  15. Becar M, Kasi A (2020) Physiology, MHC Class I. [Updated 2020 Sep 28]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). Available from: https://www.ncbi.nlm.nih.gov/books/NBK556022/

  16. Dalakas MC (2015) Inflammatory muscle diseases. N Engl J Med 372:1734–1747. https://doi.org/10.1056/NEJMra1402225

    Article  PubMed  Google Scholar 

  17. Allenbach Y, Benveniste O, Stenzel W, Boyer O (2020) Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol 16:689–701. https://doi.org/10.1038/s41584-020-00515-9

    Article  CAS  PubMed  Google Scholar 

  18. Medsger TA, Robinson H, Masi AT (1971) Factors affecting survivorship in polymyositis. A life-table study of 124 patients. Arthritis Rheum. https://doi.org/10.1002/art.1780140210

    Article  PubMed  Google Scholar 

  19. Dankó K, Ponyi A, Constantin T et al (2004) Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features. Medicine (Baltimore) 83:35–42. https://doi.org/10.1097/01.md.0000109755.65914.5e

    Article  Google Scholar 

  20. Suzuki Y, Hayakawa H, Miwa S et al (2009) Intravenous immunoglobulin therapy for refractory interstitial lung disease associated with polymyositis/dermatomyositis. Lung 187:201–206. https://doi.org/10.1007/s00408-009-9146-6

    Article  CAS  PubMed  Google Scholar 

  21. Mahler EAM, Blom M, Voermans NC et al (2011) Rituximab treatment in patients with refractory inflammatory myopathies. Rheumatology 50:2206–2213. https://doi.org/10.1093/rheumatology/ker088

    Article  CAS  PubMed  Google Scholar 

  22. Hanaoka BY, Cleary LC, Long DE et al (2014) Physical impairment in patients with idiopathic inflammatory myopathies is associated with the American College of Rheumatology functional status measure. Clin Rheumatol 34:1929–1937. https://doi.org/10.1007/s10067-014-2821-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maddali Bongi S, Del Rosso A (2011) How to prescribe physical exercise in rheumatology. Reumatismo 62:4–11. https://doi.org/10.4081/reumatismo.2010.4

    Article  Google Scholar 

  24. Alemo Munters L, Alexanderson H, Crofford LJ, Lundberg IE (2014) New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis. Curr Rheumatol Rep 16:429. https://doi.org/10.1007/s11926-014-0429-4

    Article  PubMed  Google Scholar 

  25. Caspersen C, Powell KE, Christenson GM (1985) Physical activity and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100:126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brandt C, Pedersen BK (2010) The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010:1–6. https://doi.org/10.1155/2010/520258

    Article  CAS  Google Scholar 

  27. Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081. https://doi.org/10.1152/physrev.2000.80.3.1055

    Article  CAS  PubMed  Google Scholar 

  28. Sharif K, Watad A, Bragazzi NL et al (2018) Physical activity and autoimmune diseases: get moving and manage the disease. Autoimmun Rev 17:53–72. https://doi.org/10.1016/j.autrev.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  29. Camus G, Duchateau J, Deby-Dupont G et al (1994) Anaphylatoxin C5a production during short-term submaximal dynamic exercise in man. Int J Sports Med 15:32–35. https://doi.org/10.1055/s-2007-1021016

    Article  CAS  PubMed  Google Scholar 

  30. Dufaux B, Müller R, Hollmann W (1985) Assessment of circulating immune complexes by a solid-phase C1q-binding assay during the first hours and days after prolonged exercise. Clin Chim Acta 145:313–317. https://doi.org/10.1016/0009-8981(85)90039-7

    Article  CAS  PubMed  Google Scholar 

  31. Thomsen BS, Rodgaard A, Tvede N et al (1992) Levels of complement receptor type one (CR1, CD35) on erythrocytes, circulating immune complexes and complement C3 split products C3d and C3c are not changed by short-term physical exercise or training. Int J Sports Med 13:172–175. https://doi.org/10.1055/s-2007-1021251

    Article  CAS  PubMed  Google Scholar 

  32. Bartlett DB, Willis LH, Slentz CA et al (2018) Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study. Arthritis Res Ther 20:127. https://doi.org/10.1186/s13075-018-1624-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Despeghel M, Reichel T, Zander J et al (2021) Effects of a 6 week low-dose combined resistance and endurance training on t cells and systemic inflammation in the elderly. Cells 10:843. https://doi.org/10.3390/cells10040843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steensberg A, Toft AD, Bruunsgaard H et al (2001) Strenuous exercise decreases the percentage of type 1 T cells in the circulation. J Appl Physiol 91:1708–1712. https://doi.org/10.1152/jappl.2001.91.4.1708

    Article  CAS  PubMed  Google Scholar 

  35. Schwindt CD, Zaldivar F, Wilson L et al (2007) Do circulating leucocytes and lymphocyte subtypes increase in response to brief exercise in children with and without asthma? Br J Sports Med. https://doi.org/10.1136/bjsm.2006.030205

    Article  PubMed  Google Scholar 

  36. Weinhold M, Shimabukuro-Vornhagen A, Franke A et al (2016) Physical exercise modulates the homeostasis of human regulatory T cells. J Allergy Clin Immunol 137:1607-1610.e8. https://doi.org/10.1016/j.jaci.2015.10.035

    Article  PubMed  Google Scholar 

  37. Thomas JL (2013) Helpful or harmful? Potential effects of exercise on select inflammatory conditions. Phys Sportsmed 41:93–100. https://doi.org/10.3810/psm.2013.11.2040

    Article  PubMed  Google Scholar 

  38. Boehler JF, Hogarth MW, Barberio MD et al (2017) Effect of endurance exercise on microRNAs in myositis skeletal muscle—a randomized controlled study. PLoS One 12:e0183292. https://doi.org/10.1371/journal.pone.0183292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lam IKY, Chow JX, Lau CS, Chan VSF (2018) MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett 431:201–212. https://doi.org/10.1016/j.canlet.2018.05.044

    Article  CAS  PubMed  Google Scholar 

  40. Parkes JE, Thoma A, Lightfoot AP et al (2020) MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies. BMC Rheumatol 4:25. https://doi.org/10.1186/s41927-020-00125-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Iizuka K, Machida T, Hirafuji M (2014) Skeletal muscle is an endocrine Organ. J Pharmacol Sci 125:125–131. https://doi.org/10.1254/jphs.14R02CP

    Article  CAS  PubMed  Google Scholar 

  42. Russolillo A, Iervolino S, Peluso R et al (2013) Obesity and psoriatic arthritis: from pathogenesis to clinical outcome and management. Rheumatology 52:62–67. https://doi.org/10.1093/rheumatology/kes242

    Article  CAS  PubMed  Google Scholar 

  43. Vernerová L, Horváthová V, Kropáčková T et al (2020) Alterations in activin A-myostatin-follistatin system associate with disease activity in inflammatory myopathies. Rheumatology (Oxford) 59:2491–2501. https://doi.org/10.1093/rheumatology/kez651

  44. Mageriu V, Manole E, Bastian AE, Staniceanu F (2020) Role of myokines in myositis pathogenesis and their potential to be new therapeutic targets in idiopathic inflammatory myopathies. J Immunol Res 2020:1–14. https://doi.org/10.1155/2020/9079083

    Article  CAS  Google Scholar 

  45. Pirruccello-Straub M, Jackson J, Wawersik S et al (2018) Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep 8:2292. https://doi.org/10.1038/s41598-018-20524-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mendell JR, Sahenk Z, Al-Zaidy S et al (2017) Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes. Mol Ther 25:870–879. https://doi.org/10.1016/j.ymthe.2017.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Perakakis N, Mougios V, Fatouros I et al (2018) Physiology of activins/follistatins: associations with metabolic and anthropometric variables and response to exercise. J Clin Endocrinol Metab 103:3890–3899. https://doi.org/10.1210/jc.2018-01056

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aoi W, Naito Y, Takagi T et al (2013) A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62:882–889. https://doi.org/10.1136/gutjnl-2011-300776

    Article  CAS  PubMed  Google Scholar 

  49. Jørgensen LH, Petersson SJ, Sellathurai J et al (2009) Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J Histochem Cytochem 57:29–39. https://doi.org/10.1369/jhc.2008.951954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fonseca JE, Santos MJ, Canhão H, Choy E (2009) Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev 8:538–542. https://doi.org/10.1016/j.autrev.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  51. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. https://doi.org/10.1152/physrev.90100.2007

    Article  CAS  PubMed  Google Scholar 

  52. Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25:811–816. https://doi.org/10.1016/j.bbi.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  53. Sugiura T, Kawaguchi Y, Harigai M et al (2000) Increased CD40 Expression on muscle cells of polymyositis and dermatomyositis: role of CD40-CD40 ligand interaction in IL-6, IL-8, IL-15, and monocyte chemoattractant protein-1 production. J Immunol 164:6593–6600. https://doi.org/10.4049/jimmunol.164.12.6593

    Article  CAS  PubMed  Google Scholar 

  54. Zong M, Loell I, Lindroos E et al (2012) Effects of immunosuppressive treatment on interleukin-15 and interleukin-15 receptor α expression in muscle tissue of patients with polymyositis or dermatomyositis. Ann Rheum Dis 71:1055–1063. https://doi.org/10.1136/annrheumdis-2011-200495

    Article  CAS  PubMed  Google Scholar 

  55. Gono T, Kawaguchi Y, Sugiura T et al (2010) Interleukin-18 is a key mediator in dermatomyositis: potential contribution to development of interstitial lung disease. Rheumatology 49:1878–1881. https://doi.org/10.1093/rheumatology/keq196

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y, Yin G, Hao J et al (2017) Serum interleukin-18 level is associated with disease activity and interstitial lung disease in patients with dermatomyositis. Arch Rheumatol 32:181–188. https://doi.org/10.5606/ArchRheumatol.2017.6175

    Article  PubMed  PubMed Central  Google Scholar 

  57. Frydelund-Larsen L, Penkowa M, Akerstrom T et al (2007) Exercise induces interleukin-8 receptor (CXCR2) expression in human skeletal muscle. Exp Physiol 92:233–240. https://doi.org/10.1113/expphysiol.2006.034769

    Article  CAS  PubMed  Google Scholar 

  58. Gono T, Kaneko H, Kawaguchi Y et al (2014) Cytokine profiles in polymyositis and dermatomyositis complicated by rapidly progressive or chronic interstitial lung disease. Rheumatology 53:2196–2203. https://doi.org/10.1093/rheumatology/keu258

    Article  CAS  PubMed  Google Scholar 

  59. O’Leary MF, Wallace GR, Bennett AJ et al (2017) IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Sci Rep 7:12997. https://doi.org/10.1038/s41598-017-13479-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fujimoto T, Sugimoto K, Takahashi T et al (2019) Overexpression of Interleukin-15 exhibits improved glucose tolerance and promotes GLUT4 translocation via AMP-activated protein kinase pathway in skeletal muscle. Biochem Biophys Res Commun 509:994–1000. https://doi.org/10.1016/j.bbrc.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  61. Bin LG, Zhang L, Wang DE et al (2019) Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J Cell Biochem. https://doi.org/10.1002/jcb.28946

    Article  Google Scholar 

  62. Rinnov A, Yfanti C, Nielsen S et al (2014) Endurance training enhances skeletal muscle interleukin-15 in human male subjects. Endocrine 45:271–278. https://doi.org/10.1007/s12020-013-9969-z

    Article  CAS  PubMed  Google Scholar 

  63. Garneau L, Parsons SA, Smith SR et al (2020) Plasma myokine concentrations after acute exercise in non-obese and obese sedentary women. Front Physiol 11:18. https://doi.org/10.3389/fphys.2020.00018

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li J, Li Y, Atakan MM et al (2020) The molecular adaptive responses of skeletal muscle to high-intensity exercise/training and hypoxia. Antioxidants 9:1–21. https://doi.org/10.3390/antiox9080656

    Article  CAS  Google Scholar 

  65. Yeo NH, Woo J, Shin KO et al (2012) The effects of different exercise intensity on myokine and angiogenesis factors. J Sports Med Phys Fitness 52:448–454

    CAS  PubMed  Google Scholar 

  66. Abkenar IK, Rahmani-Nia F, Lombardi G (2019) The effects of acute and chronic aerobic activity on the signaling pathway of the inflammasome NLRP3 complex in young men. Med 55:105. https://doi.org/10.3390/medicina55040105

    Article  Google Scholar 

  67. de Oliveira DS, Misse RG, Lima FR, Shinjo SK (2018) Physical exercise among patients with systemic autoimmune myopathies. Adv Rheumatol 58:5. https://doi.org/10.1186/s42358-018-0004-1

    Article  PubMed  Google Scholar 

  68. Alexanderson H (2018) Exercise in Myositis. Curr Treat Options Rheumatol 4:289–298. https://doi.org/10.1007/s40674-018-0113-3

    Article  Google Scholar 

  69. Wiesinger GF, Quittan M, Aringer M et al (1998) Improvement of physical fitness and muscle strength in polymyositis/dermatomyositis patients by a training programme. Rheumatology 37:196–200. https://doi.org/10.1093/rheumatology/37.2.196

    Article  CAS  Google Scholar 

  70. Wiesinger GF, Quittan M, Graninger M et al (1998) Benefit of 6 months long-term physical training in polymyositis/dermatomyositis patients. Br J Rheumatol 37:1338–1342. https://doi.org/10.1093/rheumatology/37.12.1338

    Article  CAS  PubMed  Google Scholar 

  71. Alemo Munters L, Dastmalchi M, Katz A et al (2013) Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Res Ther 15:R83. https://doi.org/10.1186/ar4263

    Article  PubMed  PubMed Central  Google Scholar 

  72. Alemo Munters L, Dastmalchi M, Andgren V et al (2013) Improvement in health and possible reduction in disease activity using endurance exercise in patients with established polymyositis and dermatomyositis: a multicenter randomized controlled trial with a 1-year open extension followup. Arthritis Care Res (Hoboken) 65:1959–1968. https://doi.org/10.1002/acr.22068

    Article  Google Scholar 

  73. Munters LA, Loell I, Ossipova E et al (2016) Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheumatol 68:1738–1750. https://doi.org/10.1002/art.39624

    Article  CAS  PubMed  Google Scholar 

  74. Alexanderson H, Munters LA, Dastmalchi M et al (2014) Resistive home exercise in patients with recent-onset polymyositis and dermatomyositis — a randomized controlled single-blinded study with a 2-year followup. J Rheumatol 41:1124–1132. https://doi.org/10.3899/jrheum.131145

    Article  PubMed  Google Scholar 

  75. Omori CH, Silva CAA, Sallum AME et al (2012) Exercise training in juvenile dermatomyositis. Arthritis Care Res 64:1186–1194. https://doi.org/10.1002/acr.21684

    Article  CAS  Google Scholar 

  76. Habers GEA, Joyce Bos GJF, van Royen-Kerkhof A et al (2016) Muscles in motion: A randomized controlled trial on the feasibility, safety and efficacy of an exercise training programme in children and adolescents with juvenile dermatomyositis. Rheumatol (United Kingdom). https://doi.org/10.1093/rheumatology/kew026

    Article  Google Scholar 

  77. Voet NB, van der Kooi EL, Riphagen II et al (2013) Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 7:CD003907. https://doi.org/10.1002/14651858.CD003907.pub4

    Article  Google Scholar 

  78. Voet NB, van der Kooi EL, van Engelen BG, Geurts AC (2019) Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 12:CD003907. https://doi.org/10.1002/14651858.CD003907.pub5

    Article  PubMed  Google Scholar 

  79. Takken T, van der Net J, Engelbert RHH et al (2008) Responsiveness of exercise parameters in children with inflammatory myositis. Arthritis Rheum 59:59–64. https://doi.org/10.1002/art.23250

    Article  PubMed  Google Scholar 

  80. Takken T, Spermon N, Helders PJM et al (2003) Aerobic exercise capacity in patients with juvenile dermatomyositis. J Rheumatol 30:1075–1080

    PubMed  Google Scholar 

  81. Arnardottir S, Alexanderson H, Lundberg IE, Borg K (2003) Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction. J Rehabil Med 35:31–35. https://doi.org/10.1080/16501970306110

    Article  PubMed  Google Scholar 

  82. Johnson LG, Edwards DJ, Walters S et al (2007) The effectiveness of an individualized, home-based functional exercise program for patients with sporadic inclusion body myositis. J Clin Neuromuscul Dis 8:187–194. https://doi.org/10.1097/CND.0b013e3181237291

    Article  Google Scholar 

  83. Johnson LG, Collier KE, Edwards DJ et al (2009) Improvement in aerobic capacity after an exercise program in sporadic inclusion body myositis. J Clin Neuromuscul Dis 10:178–184. https://doi.org/10.1097/CND.0b013e3181a23c86

    Article  PubMed  Google Scholar 

  84. de Souza JM, de Oliveira DS, Perin LA et al (2019) Feasibility, safety and efficacy of exercise training in immune-mediated necrotising myopathies: a quasi-experimental prospective study. Clin Exp Rheumatol 37:235–241

    PubMed  Google Scholar 

  85. Barber-Westin S, Noyes FR (2019) Blood flow–restricted training for lower extremity muscle weakness due to knee pathology: a systematic review. Sport Heal A Multidiscip Approach 11:69–83. https://doi.org/10.1177/1941738118811337

    Article  Google Scholar 

  86. Jensen KY, Jacobsen M, Schrøder HD et al (2019) The immune system in sporadic inclusion body myositis patients is not compromised by blood-flow restricted exercise training. Arthritis Res Ther 21:293. https://doi.org/10.1186/s13075-019-2036-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mattar MA, Gualano B, Perandini LA et al (2014) Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis. Arthritis Res Ther 16:473. https://doi.org/10.1186/s13075-014-0473-5

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gualano B, Neves M, Lima FR et al (2010) Resistance training with vascular occlusion in inclusion body myositis. Med Sci Sport Exerc 42:250–254. https://doi.org/10.1249/MSS.0b013e3181b18fb8

    Article  Google Scholar 

  89. Santos AR, Neves MT, Gualano B et al (2014) Mechablood flow restricted resistance training attenuates myostatin gene expression in a patient with inclusion body myositis. Biol Sport 31:121–124. https://doi.org/10.5604/20831862.1097479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jørgensen A, Aagaard P, Frandsen U et al (2018) Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: a randomized controlled trial. Scand J Rheumatol 47:400–409. https://doi.org/10.1080/03009742.2017.1423109

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RT conceived the idea and wrote the final version of the manuscript, helped perform bibliographic research, drew the figure, edited tables, and critically revised the paper. IP performed bibliographic research, wrote the first draft of the manuscript and tables, and designed physical protocols. RR revised the manuscript and physical protocols. LM critically revised the manuscript. All the authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Rossella Talotta.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talotta, R., Porrello, I., Restuccia, R. et al. Physical activity in idiopathic inflammatory myopathies: two intervention proposals based on literature review. Clin Rheumatol 41, 593–615 (2022). https://doi.org/10.1007/s10067-021-05954-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05954-7

Keywords

Navigation