Skip to main content

Advertisement

Log in

Dermatomyositis: immunological landscape, biomarkers, and potential candidate drugs

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Dermatomyositis (DM) is a rare inflammatory disease characterized by the invasion of the skin and muscles. Environmental, genetic, and immunological factors contribute to disease pathology. To date, no bioinformatics studies have been conducted on the potential pathogenic genes and immune cell infiltration in DM. Therefore, we aimed to identify differentially expressed genes (DEGs) and immune cells, as well as potential pathogenic genes and immune characteristics, which may be useful for the diagnosis and treatment of DM.

Method

GSE1551, GSE5370, GSE39454, and GSE48280 from Gene Expression Omnibus were included in our study. Limma, ClusterProfiler, and Kyoto Encyclopedia of Genes and Genomes were used to identify DEGs, Gene Ontology (GO), and perform pathway analyses, respectively. Cytoscape was used to construct the protein-protein interaction (PPI) network. Small-molecule drugs were identified using a connectivity map (CMap), and the TIMER database was used to identify infiltrating cells.

Results

DEG analysis identified 12 downregulated and 163 upregulated genes. GO analysis showed that DEGs were enriched in immune-related pathways. Ten hub genes were identified from the PPI network. Additionally, CMap analysis showed that caffeic acid, sulfaphenazole, molindone, tiabendazole, and bacitracin were potential small-molecule drugs with therapeutic significance. We identified eight immune cells with differential infiltration in patients with DM and controls. Finally, we constructed a powerful diagnostic model based on memory B cells, M1, and M2 macrophages.

Conclusions

This study explored the potential molecular mechanism and immunological landscape of DM and may guide future research and treatment of DM.

Key Points

We explored the molecular mechanism and immunological landscape of dermatomyositis.

GO analysis showed that DEGs were enriched in immune-related pathways.

We predicted small-molecular drugs with potential therapeutic significance based on bioanalytical techniques.

We identified six immune cells with differential infiltration in patients with DM and controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Qudsiya Z, Waseem M (2020) Dermatomyositis. In: StatPearls. StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC., Treasure Island (FL)

  2. Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet (London, England) 362(9388):971–982. https://doi.org/10.1016/s0140-6736(03)14368-1

    Article  CAS  Google Scholar 

  3. Tournadre A, Miossec P (2013) A critical role for immature muscle precursors in myositis. Nat Rev Rheumatol 9(7):438–442. https://doi.org/10.1038/nrrheum.2013.26

    Article  CAS  PubMed  Google Scholar 

  4. DeWane ME, Waldman R, Lu J (2020) Dermatomyositis: clinical features and pathogenesis. J Am Acad Dermatol 82(2):267–281. https://doi.org/10.1016/j.jaad.2019.06.1309

    Article  CAS  PubMed  Google Scholar 

  5. Shao C, Li S, Sun Y, Zhang Y, Xu K, Zhang X, Huang H (2020) Clinical characteristics and prognostic analysis of Chinese dermatomyositis patients with malignancies. Medicine 99(34):e21899. https://doi.org/10.1097/md.0000000000021899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adler BL, Christopher-Stine L (2018) Triggers of inflammatory myopathy: insights into pathogenesis. Discov Med 25(136):75–83

    PubMed  PubMed Central  Google Scholar 

  7. Dourmishev AL, Dourmishev LA (1999) Dermatomyositis and drugs. Adv Exp Med Biol 455:187–191. https://doi.org/10.1007/978-1-4615-4857-7_27

    Article  CAS  PubMed  Google Scholar 

  8. O'Hanlon TP, Carrick DM, Arnett FC, Reveille JD, Carrington M, Gao X, Oddis CV, Morel PA, Malley JD, Malley K, Dreyfuss J, Shamim EA, Rider LG, Chanock SJ, Foster CB, Bunch T, Plotz PH, Love LA, Miller FW (2005) Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1 and -DQA1 allelic profiles and motifs define clinicopathologic groups in caucasians. Medicine 84(6):338–349. https://doi.org/10.1097/01.md.0000189818.63141.8c

    Article  CAS  PubMed  Google Scholar 

  9. O'Hanlon TP, Rider LG, Mamyrova G, Targoff IN, Arnett FC, Reveille JD, Carrington M, Gao X, Oddis CV, Morel PA, Malley JD, Malley K, Shamim EA, Chanock SJ, Foster CB, Bunch T, Reed AM, Love LA, Miller FW (2006) HLA polymorphisms in African Americans with idiopathic inflammatory myopathy: allelic profiles distinguish patients with different clinical phenotypes and myositis autoantibodies. Arthritis Rheum 54(11):3670–3681. https://doi.org/10.1002/art.22205

    Article  CAS  PubMed  Google Scholar 

  10. Gao X, Han L, Yuan L, Yang Y, Gou G, Sun H, Lu L, Bao L (2014) HLA class II alleles may influence susceptibility to adult dermatomyositis and polymyositis in a Han Chinese population. BMC Dermatol 14:9. https://doi.org/10.1186/1471-5945-14-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lahouti AH, Christopher-Stine L (2015) Polymyositis and dermatomyositis: novel insights into the pathogenesis and potential therapeutic targets. Discov Med 19(107):463–470

    PubMed  Google Scholar 

  12. Greenberg SA (2007) A gene expression approach to study perturbed pathways in myositis. Curr Opin Rheumatol 19(6):536–541. https://doi.org/10.1097/BOR.0b013e3282efe261

    Article  PubMed  Google Scholar 

  13. Schultz HY, Dutz JP, Furukawa F, Goodfield MJ, Kuhn A, Lee LA, Nyberg F, Szepietowski JC, Sontheimer RD, Werth VP (2015) From pathogenesis, epidemiology, and genetics to definitions, diagnosis, and treatments of cutaneous lupus erythematosus and dermatomyositis: a report from the 3rd International Conference on Cutaneous Lupus Erythematosus (ICCLE) 2013. The Journal of investigative dermatology 135(1):7–12. https://doi.org/10.1038/jid.2014.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghirardello A, Zampieri S, Tarricone E, Iaccarino L, Gorza L, Doria A (2011) Cutting edge issues in polymyositis. Clin Rev Allergy Immunol 41(2):179–189. https://doi.org/10.1007/s12016-010-8238-7

    Article  CAS  PubMed  Google Scholar 

  15. Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M, Hastings E, Huber W, Jupp S, Keays M, Kryvych N, McMurry J, Marioni JC, Malone J, Megy K, Rustici G, Tang AY, Taubert J, Williams E, Mannion O, Parkinson HE, Brazma A (2014) Expression atlas update--a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucleic Acids Res 42(Database issue):D926–D932. https://doi.org/10.1093/nar/gkt1270

    Article  CAS  PubMed  Google Scholar 

  16. Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R, Barohn RJ, Saperstein DS, Briemberg HR, Ericsson M, Park P, Amato AA (2005) Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 57(5):664–678. https://doi.org/10.1002/ana.20464

    Article  CAS  PubMed  Google Scholar 

  17. Zhu W, Streicher K, Shen N, Higgs BW, Morehouse C, Greenlees L, Amato AA, Ranade K, Richman L, Fiorentino D, Jallal B, Greenberg SA, Yao Y (2012) Genomic signatures characterize leukocyte infiltration in myositis muscles. BMC Med Genet 5:53. https://doi.org/10.1186/1755-8794-5-53

    Article  CAS  Google Scholar 

  18. Suárez-Calvet X, Gallardo E, Nogales-Gadea G, Querol L, Navas M, Díaz-Manera J, Rojas-Garcia R, Illa I (2014) Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis. J Pathol 233(3):258–268. https://doi.org/10.1002/path.4346

    Article  CAS  PubMed  Google Scholar 

  19. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England) 28(6):882–883. https://doi.org/10.1093/bioinformatics/bts034

    Article  CAS  Google Scholar 

  20. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE, Liu Z, Donahue M, Julian B, Khan M, Wadden D, Smith IC, Lam D, Liberzon A, Toder C, Bagul M, Orzechowski M, Enache OM, Piccioni F, Johnson SA, Lyons NJ, Berger AH, Shamji AF, Brooks AN, Vrcic A, Flynn C, Rosains J, Takeda DY, Hu R, Davison D, Lamb J, Ardlie K, Hogstrom L, Greenside P, Gray NS, Clemons PA, Silver S, Wu X, Zhao WN, Read-Button W, Wu X, Haggarty SJ, Ronco LV, Boehm JS, Schreiber SL, Doench JG, Bittker JA, Root DE, Wong B, Golub TR (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171 (6):1437-1452.e1417. doi:https://doi.org/10.1016/j.cell.2017.10.049

  21. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible 45 (D1):D362-d368. doi:https://doi.org/10.1093/nar/gkw937

  23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–w514. https://doi.org/10.1093/nar/gkaa407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plattner C, Finotello F, Rieder D (2020) Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq. Methods Enzymol 636:261–285. https://doi.org/10.1016/bs.mie.2019.05.056

    Article  CAS  PubMed  Google Scholar 

  26. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. 18 (1):220. doi:https://doi.org/10.1186/s13059-017-1349-1

  27. Collins DM, Madden SF, Gaynor N, AlSultan D, Le Gal M, Eustace AJ (2020) Effects of HER family-targeting tyrosine kinase inhibitors on antibody-dependent cell-mediated cytotoxicity in HER2-expressing breast. Cancer. doi:https://doi.org/10.1158/1078-0432.ccr-20-2007

  28. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data 6. doi:https://doi.org/10.7554/eLife.26476

  29. Li W, Zhang Z, Wang ZM (2020) Differential immune cell infiltrations between healthy periodontal and chronic periodontitis tissues. BMC oral health 20(1):293. https://doi.org/10.1186/s12903-020-01287-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xin Y, Zhang S, Deng Z, Zeng D, Li J, Zhang Y (2020) Identification and verification immune-related regulatory network in acne. International immunopharmacology 89 (Pt B):107083. doi:https://doi.org/10.1016/j.intimp.2020.107083

  31. Xiu MX, Liu YM, Chen GY, Hu C, Kuang BH (2020) Identifying hub genes, key pathways and immune cell infiltration characteristics in pediatric and adult ulcerative colitis by integrated bioinformatic analysis. Digestive diseases and sciences. doi:https://doi.org/10.1007/s10620-020-06611-w

  32. Ren C, Li M, Du W, Lü J, Zheng Y, Xu H, Quan R (2020) Comprehensive bioinformatics analysis reveals hub genes and inflammation state of rheumatoid arthritis. 2020:6943103. doi:https://doi.org/10.1155/2020/6943103

  33. Cao Y, Tang W, Tang W (2019) Immune cell infiltration characteristics and related core genes in lupus nephritis: results from bioinformatic analysis. 20 (1):37. doi:https://doi.org/10.1186/s12865-019-0316-x

  34. Newman AM, Liu CL, Green MR (2015) Robust enumeration of cell subsets from tissue expression profiles. 12 (5):453-457. doi:https://doi.org/10.1038/nmeth.3337

  35. Moneta GM, Pires Marafon D, Marasco E (2019) Muscle expression of type I and type II interferons is increased in juvenile dermatomyositis and related to clinical and histologic features 71 (6):1011–1021. doi:https://doi.org/10.1002/art.40800

  36. Peng QL, Lin JM, Zhang YB, Zhang XZ, Wang PP, Wu TT, Yu J, Dong XQ, Gu ML, Wang GC (2018) Targeted capture sequencing identifies novel genetic variations in Chinese patients with idiopathic inflammatory myopathies. Int J Rheum Dis 21(8):1619–1626. https://doi.org/10.1111/1756-185x.13350

    Article  CAS  PubMed  Google Scholar 

  37. Rothwell S, Cooper RG, Lundberg IE, Miller FW, Gregersen PK, Bowes J, Vencovsky J, Danko K, Limaye V, Selva-O'Callaghan A, Hanna MG, Machado PM, Pachman LM, Reed AM, Rider LG, Cobb J, Platt H, Molberg Ø, Benveniste O, Mathiesen P, Radstake T, Doria A, De Bleecker J, De Paepe B, Maurer B, Ollier WE, Padyukov L, O'Hanlon TP, Lee A, Amos CI, Gieger C, Meitinger T, Winkelmann J, Wedderburn LR, Chinoy H, Lamb JA (2016) Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 75(8):1558–1566. https://doi.org/10.1136/annrheumdis-2015-208119

    Article  CAS  PubMed  Google Scholar 

  38. Furuya T, Hakoda M, Higami K, Ueda H, Tsuchiya N, Tokunaga K, Kamatani N, Kashiwazaki S (1998) Association of HLA class I and class II alleles with myositis in Japanese patients. J Rheumatol 25(6):1109–1114

    CAS  PubMed  Google Scholar 

  39. Tournadre A, Lenief V, Eljaafari A, Miossec P (2012) Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum 64(2):533–541. https://doi.org/10.1002/art.33350

    Article  CAS  PubMed  Google Scholar 

  40. Franzi S, Salajegheh M, Nazareno R, Greenberg SA (2013) Type 1 interferons inhibit myotube formation independently of upregulation of interferon-stimulated gene 15. PLoS One 8(6):e65362. https://doi.org/10.1371/journal.pone.0065362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bilgic H, Ytterberg SR, Amin S, McNallan KT, Wilson JC, Koeuth T, Ellingson S, Newman B, Bauer JW, Peterson EJ, Baechler EC, Reed AM (2009) Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum 60(11):3436–3446. https://doi.org/10.1002/art.24936

    Article  CAS  PubMed  Google Scholar 

  42. Greenberg SA, Higgs BW, Morehouse C, Walsh RJ, Kong SW, Brohawn P, Zhu W, Amato A, Salajegheh M, White B, Kiener PA, Jallal B, Yao Y (2012) Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun 13(3):207–213. https://doi.org/10.1038/gene.2011.61

    Article  CAS  PubMed  Google Scholar 

  43. Aouba A, Georgin-Lavialle S, Terrier B, Guillevin L, Authier FJ (2011) Anti-PL7 antisynthetase syndrome under interferon therapy. Joint bone spine 78(1):94–97. https://doi.org/10.1016/j.jbspin.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  44. Ladislau L, Suárez-Calvet X, Toquet S, Landon-Cardinal O, Amelin D, Depp M, Rodero MP, Hathazi D, Duffy D, Bondet V, Preusse C, Bienvenu B, Rozenberg F, Roos A, Benjamim CF, Gallardo E, Illa I, Mouly V, Stenzel W, Butler-Browne G, Benveniste O, Allenbach Y (2018) JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain : a journal of neurology 141(6):1609–1621. https://doi.org/10.1093/brain/awy105

    Article  Google Scholar 

  45. Hornung T, Wenzel J (2014) Innate immune-response mechanisms in dermatomyositis: an update on pathogenesis, diagnosis and treatment. Drugs 74(9):981–998. https://doi.org/10.1007/s40265-014-0240-6

    Article  CAS  PubMed  Google Scholar 

  46. Kaufmann J, Hunzelmann N, Genth E, Krieg T (2005) The clinical spectrum of dermatomyositis. Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG 3(3):181–194. https://doi.org/10.1111/j.1610-0378.2005.05006.x

    Article  PubMed  Google Scholar 

  47. Kee SJ, Kim TJ, Lee SJ, Cho YN, Park SC, Kim JS, Kim JC, Kang HS, Lee SS, Park YW (2009) Dermatomyositis associated with hepatitis B virus-related hepatocellular carcinoma. Rheumatol Int 29(5):595–599. https://doi.org/10.1007/s00296-008-0718-1

    Article  PubMed  Google Scholar 

  48. Hoesly FJ, Sluzevich JC (2014) Chronic cutaneous varicella zoster virus infection complicating dermatomyositis. J Dermatol 41(4):334–336. https://doi.org/10.1111/1346-8138.12402

    Article  CAS  PubMed  Google Scholar 

  49. Thompson C, Piguet V, Choy E (2018) The pathogenesis of dermatomyositis. Br J Dermatol 179(6):1256–1262. https://doi.org/10.1111/bjd.15607

    Article  CAS  PubMed  Google Scholar 

  50. Wang D, Lei L (2020) Interleukin-35 regulates the balance of Th17 and Treg responses during the pathogenesis of connective tissue diseases. Int J Rheum Dis. https://doi.org/10.1111/1756-185x.13962

  51. Waschbisch A, Schwab N, Ruck T, Stenner MP, Wiendl H (2010) FOXP3+ T regulatory cells in idiopathic inflammatory myopathies. J Neuroimmunol 225(1–2):137–142. https://doi.org/10.1016/j.jneuroim.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  52. Peng QL, Zhang YL, Shu XM, Yang HB, Zhang L, Chen F, Lu X, Wang GC (2015) Elevated serum levels of soluble CD163 in polymyositis and dermatomyositis: associated with macrophage infiltration in muscle tissue. J Rheumatol 42(6):979–987. https://doi.org/10.3899/jrheum.141307

    Article  CAS  PubMed  Google Scholar 

  53. Ragusa F (2019) Dermatomyositis and MIG. La Clinica terapeutica 170(2):e142–e147. https://doi.org/10.7417/ct.2019.2124

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Y, Wang J, Chang Y, Li R, Sun X, Peng L, Zheng W (2020) Caffeic acid phenethyl ester protects against experimental autoimmune encephalomyelitis by regulating T cell activities. 2020:7274342. doi:https://doi.org/10.1155/2020/7274342

  55. Choi JH, Roh KH, Oh H, Park SJ, Ha SM, Kang MS, Lee JH, Jung SY, Song H, Yang JW, Park S (2015) Caffeic acid phenethyl ester lessens disease symptoms in an experimental autoimmune uveoretinitis mouse model. Exp Eye Res 134:53–62. https://doi.org/10.1016/j.exer.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  56. Huang C, Liu W, Perry CN, Yitzhaki S, Lee Y, Yuan H, Tsukada YT, Hamacher-Brady A, Mentzer RM Jr, Gottlieb RA (2010) Autophagy and protein kinase C are required for cardioprotection by sulfaphenazole. Am J Phys Heart Circ Phys 298(2):H570–H579. https://doi.org/10.1152/ajpheart.00716.2009

    Article  CAS  Google Scholar 

  57. Goktas MT, Karaca RO, Kalkisim S, Cevik L, Kilic L, Akdogan A, Babaoglu MO, Bozkurt A, Bertilsson L, Yasar U (2017) Decreased activity and genetic polymorphisms of CYP2C19 in Behçet’s disease. Basic & clinical pharmacology & toxicology 121(4):266–271. https://doi.org/10.1111/bcpt.12710

    Article  CAS  Google Scholar 

  58. Waugaman RM (2009) Potential lower efficacy of molindone among first-generation antipsychotics. Am J Psychiatry 166 (4):491; author reply 492-493. doi:https://doi.org/10.1176/appi.ajp.2009.08111696

  59. Elgebaly SA, Forouhar F, Dore-Duffy P (1984) Thiabendazole-induced suppression of renal damage in a murine model of autoimmune disease. Am J Pathol 115(2):204–211

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsushima S, Yoshitoshi T, Shichi H (1990) Immunosuppression by gramicidin S of experimental autoimmune uveoretinitis, pinealitis and autoimmune encephalomyelitis. J Ocul Pharmacol 6(3):219–226. https://doi.org/10.1089/jop.1990.6.219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ruxue Yin, Gangjian Wang, and Shengyun Liu; data curation: Ruxue Yin and Lei Zhang; formal analysis: Ruxue Yin, Gangjian Wang, and Shengyun Liu; methodology: Ruxue Yin, Gangjian Wang, and Tianfang Li; resources: Gangjian Wang, Lei Zhang, and Tianfang Li; supervision: Ruxue Yin, Tianfang Li, and Shengyun Liu; writing—original draft: Ruxue Yin and Shengyun Liu; writing—review and editing: Ruxue Yin, Gangjian Wang, and Shengyun Liu.

Corresponding authors

Correspondence to Tianfang Li or Shengyun Liu.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, R., Wang, G., Zhang, L. et al. Dermatomyositis: immunological landscape, biomarkers, and potential candidate drugs. Clin Rheumatol 40, 2301–2310 (2021). https://doi.org/10.1007/s10067-020-05568-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05568-5

Keywords

Navigation