Skip to main content
Log in

CD5+ B lymphocytes in systemic lupus erythematosus patients: relation to disease activity

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

B cells are essential players in the pathogenic mechanisms of systemic lupus erythematosus (SLE). Although CD5+ B cells have been considered to play a paradoxical role in preventing, rather than inducing autoimmunity, there is no consensus agreement about the proportions of CD5+ B cells population in SLE patients. So, the aim of the present study was to assess blood concentration of CD5+ B cells in patients with SLE and to evaluate their relationship with disease activity and organ damage. We recruited 100 SLE patients and 100 healthy control subjects. Based on SLE disease activity index (SLEDAI), patients were divided into two groups: active SLE (n = 50) and inactive SLE (n = 50). SLE was active when SLEDAI was ≥ 4. The expression of CD5+ B cells was evaluated using flow cytometry to measure the proportions and absolute numbers of the cells. The proportions of CD5+ B cells of total lymphocytes were significantly lower in SLE patients versus controls (4.1 ± 3.9 vs 10.8 ± 5.2%, P = <0.001). CD5+ B cells were significantly decreased in active SLE patients (3.1 ± 2.7%) in comparison to inactive patients (5.2 ± 3.7%) (P = 0.013). CD5+ B cells correlated positively with C3 (r = 0.328, P = 0.020) and C4 (r = 0.355, P = 0.011). CD5+ B cells were significantly decreased in SLE patients compared to healthy controls and they were significantly decreased in active SLE patients in comparison to inactive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D'Cruz D, Khamashta M, Hughes G (2007) Systemic lupus erythematosus. Lancet 369:587–596

    Article  PubMed  Google Scholar 

  2. Mageed R, Prud'homme G (2003) Immunopathology and the gene therapy of lupus. Gene Ther 10:861–874

    Article  CAS  PubMed  Google Scholar 

  3. Lino AC, Dörner T, Bar-Or A et al (2016) Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev 269:130–144

    Article  CAS  PubMed  Google Scholar 

  4. Dorner T, Lipsky PE (2016) Beyond pan-B-cell-directed therapy—new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol 12:645–657

    Article  PubMed  Google Scholar 

  5. Chan OT, Madaio MP, Shlomchik MJ (1999) The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev 169:107–121

    Article  CAS  PubMed  Google Scholar 

  6. La Cava A, Fang CJ, Singh RP et al (2005) Manipulation of immune regulation in systemic lupus erythematosus. Autoimmun Rev 4:515–519

    Article  PubMed  Google Scholar 

  7. Odendahl M, Jacobi A, Hansen A et al (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165:5970–5979

    Article  CAS  PubMed  Google Scholar 

  8. Jacobi AM, Odendahl M, Reiter K et al (2003) Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 48:1332–1342

    Article  PubMed  Google Scholar 

  9. Chang NH, McKenzie T, Bonventi G et al (2008) Expanded population of activated antigen-engaged cells within the naive B cell compartment of patients with systemic lupus erythematosus. J Immunol 180:1276–1284

    Article  CAS  PubMed  Google Scholar 

  10. Boumsell L, Coppin H, Pham D et al (1980) An antigen shared by a human T cell subset and B cell chronic lymphocytic leukemic cells. Distribution on normal and malignant lymphoid cells. J Exp Med 152:229–234

    Article  CAS  PubMed  Google Scholar 

  11. Caligaris-Cappio F, Gobbi M, Bofill M et al (1982) Infrequent normal B lymphocytes express features of B-chronic lymphocytic leukemia. J Exp Med 155:623–628

    Article  CAS  PubMed  Google Scholar 

  12. Kantor A (1991) A new nomenclature for B cells. Immunol Today 12:388

    Article  CAS  PubMed  Google Scholar 

  13. Kasaian MT, Ikematsu H, Casali P (1992) Identification and analysis of a novel human surface CD5- B lymphocyte subset producing natural antibodies. J Immunol 148:2690–2702

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Youinou P (2011) Renaudineau Y.CD5 Expression in B cells from patients with systemic lupus erythematosus. Crit Rev Immunol 31:31–42

    Article  CAS  PubMed  Google Scholar 

  15. Smith HR (1990) Olson RR.CD5+ B lymphocytes in systemic lupus erythematosus and rheumatoid arthritis. J Rheumatol 17:833–835

    CAS  PubMed  Google Scholar 

  16. Casali P, Burastero SE, Balow JE et al (1989) High-affinity antibodies to ssDNA are produced by CD-B cells in systemic lupus erythematosus patients. J Immunol 143:3476–3483

    CAS  PubMed  Google Scholar 

  17. Victor KD, Randen I, Thompson K et al (1991) Rheumatoid factors isolated from patients with autoimmune disorders are derived from germline genes distinct from those encoding the Wa, Po, and Bla cross-reactive idiotypes. J Clin Invest 87:1603–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Youinou P, Renaudineau Y (2007) The paradox of CD5-expressing B cells in systemic lupus erythematosus. Autoimmun Rev 7:149–154

    Article  CAS  PubMed  Google Scholar 

  19. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725

    Article  CAS  PubMed  Google Scholar 

  20. Mosca M, Bombardieri S (2006) Assessing remission in systemic lupus erythematosus. Clin Exp Rheumatol 24:S-99–S104

    Google Scholar 

  21. Ruiz-Irastorza G, Khamashta MA, Castellino G et al (2001) Systemic lupus erythematosus. Lancet 357:1027–1032

    Article  CAS  PubMed  Google Scholar 

  22. Renaudineau Y, Pers JO, Bendaoud B et al (2004) Dysfunctional B cells in systemic lupus erythematosus. Autoimmun Rev 3:516–523

    Article  CAS  PubMed  Google Scholar 

  23. Hippen K, Tze L (2000) Behrens T.CD5 maintains tolerance in anergic B cells. J Exp Med 191:883–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korganow AS, Knapp AM, Nehme-Schuster H et al (2010) Peripheral B cell abnormalities in patients with systemic lupus erythematosus in quiescent phase: decreased memory B cells and membrane CD19 expression. J Autoimmun 34:426–434

    Article  CAS  PubMed  Google Scholar 

  25. Vernino LA, Pisetsky DS, Lipsky PE (1992) Analysis of the expression of CD5 by human B cells and correlation with functional activity. Cell Immunol 139:185–197

    Article  CAS  PubMed  Google Scholar 

  26. Garaud S, Le Dantec C, Jousse-Joulin S et al (2009) IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation. J Immunol 182:5623–5632

    Article  CAS  PubMed  Google Scholar 

  27. Markeljevic J, Batinic D, Uzarevic B et al (1994) Peripheral blood CD5+ B cell subset in the remission phase of systemic connective tissue diseases. J Rheumatol 21:2225–2230

    CAS  PubMed  Google Scholar 

  28. Bohm I (2004) Increased peripheral blood B-cells expressing the CD5 molecules in association to autoantibodies in patients with lupus erythematosus and evidence to selectively down-modulate them. Biomed Pharmacother = Biomed Pharmacother 58:338–343

    Article  PubMed  Google Scholar 

  29. Duan B, Morel L (2006) Role of B-1a cells in autoimmunity. Autoimmun Rev 5:403–408

    Article  CAS  PubMed  Google Scholar 

  30. Bouaziz J, Yanaba K, Tedder T (2008) Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 224:201–214

    Article  CAS  PubMed  Google Scholar 

  31. Becker H, Weber C, Storch S et al (1990) Relationship between CD5+ B lymphocytes and the activity of systemic autoimmunity. Clin Immunol Immunopathol 56:219–225

    Article  CAS  PubMed  Google Scholar 

  32. Ebo D, DeClerck LS, Bridts CH et al (1994) Expression of CD5 and CD23 on B cells of patients with rheumatoid arthritis, systemic lupus erythematosus and Sjogren's syndrome. Relationship with disease activity and treatment. In Vivo (Athens, Greece) 8:577–580

    CAS  Google Scholar 

  33. Gupta R, Jain P, Deo SV et al (2004) Flow cytometric analysis of CD5+ B cells: a frame of reference for minimal residual disease analysis in chronic lymphocytic leukemia. Am J Clin Pathol 121:368–372

    Article  PubMed  Google Scholar 

  34. Ahearn JM, Fischer MB, Croix D et al (1996) Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4:251–262

    Article  CAS  PubMed  Google Scholar 

  35. Reid RR, Woodcock S, Shimabukuro-Vornhagen A et al (2002) Functional activity of natural antibody is altered in Cr2-deficient mice. J Immunol 169:5433–5440

    Article  CAS  PubMed  Google Scholar 

  36. Carroll MC (2004) The complement system in B cell regulation. Mol Immunol 41:141–146

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samah Ismail Nasef.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, H.H., Nasef, S.I., Omar, H.H. et al. CD5+ B lymphocytes in systemic lupus erythematosus patients: relation to disease activity. Clin Rheumatol 36, 2719–2726 (2017). https://doi.org/10.1007/s10067-017-3818-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3818-z

Keywords

Navigation