Skip to main content

Advertisement

Log in

Landslide susceptibility modeling using bivariate statistical-based logistic regression, naïve Bayes, and alternating decision tree models

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The main aim of this study is to use weights of evidence (WoE), logistic regression (LR), naïve Bayes (NB), and alternating decision tree (ADTree) models to draw a landslide susceptibility map in Yanchuan County, China. First, 311 landslide points were identified through historical data, aerial interpretation, and field investigation to generate landslide inventory maps. Second, the landslide points were randomly divided into two groups (70%/30%) for training and validation. Then, 16 landslide conditioning factors were selected, namely slope aspect, slope angle, elevation, topographic roughness index (TRI), slope length (SL), convergence index (CI), terrain positioning index (TPI), profile curvature, plan curvature, distance to rivers, distance to roads, lithology, soil, rainfall, land use, and normalized difference vegetation index (NDVI). Variance inflation factors (VIF), tolerance (TOL), and Pearson correlation coefficient (PCC) were used to detect potential multicollinearity problems between these factors. The performance of the model was evaluated using receiver operating characteristic (ROC) curves and area under curve (AUC) methods. The areas under the curve obtained through WoE, LR, NB, and ADTree methods are 0.822, 0.833, 0.821, and 0.847 for the training dataset, and 0.888, 0.897, 0.898, and 0.823 for the validation dataset, respectively. The results show that the ADTree model has an overfitting state, so LR has the best balance performance. This also proves that advanced machine learning models do not necessarily perform better than traditional models. The results obtained will assist in the future identification of landslide areas to better manage and reduce the negative environmental impact of landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedini M, Tulabi S (2018) Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran. Environ Earth Sci 77(11):405

    Article  Google Scholar 

  • Abedini M, Ghasemian B, Shirzadi A, Bui DT (2019) A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environ Earth Sci 78(18):560

    Article  Google Scholar 

  • Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front 11(3):871–883

    Article  Google Scholar 

  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud E (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10(8):194

    Article  Google Scholar 

  • Achour Y, Saidani Z, Touati R, Pham QB, Pal SC, Mustafa F, Sanli FB (2021) Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality. Environ Earth Sci 80(17):575

    Article  Google Scholar 

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey. Landslides 9(1):93–106

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32(4):269–277

    Article  Google Scholar 

  • Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenviron Disasters 2(1):6

    Article  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Bhargavi P, Jyothi S (2009) Applying naive Bayes data mining technique for classification of agricultural land soils. Int J Comput Sci Netw Secur 9(8):117–122

    Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists-modeling with GIS. Comput Methods Geosci 13:398

    Google Scholar 

  • Bordoni M, Vivaldi V, Lucchelli L, Ciabatta L, Brocca L, Galve JP, Meisina C (2021) Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale. Landslides 18(4):1209–1229

    Article  Google Scholar 

  • Bourenane H, Guettouche MS, Bouhadad Y, Braham M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab J Geosci 9(2):154

    Article  Google Scholar 

  • Bui DT, Ho T-C, Pradhan B, Pham B-T, Nhu V-H, Revhaug I (2016a) GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ Earth Sci 75(14):1101

    Article  Google Scholar 

  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016b) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Article  Google Scholar 

  • Camilo DC, Lombardo L, Mai PM, Dou J, Huser RI (2017) Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized generalized linear model. Environ Model Softw 97:145–156

    Article  Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72(1–4):250–271

    Article  Google Scholar 

  • Cheeseman PC, Stutz JC (1996) Bayesian classification (AutoClass): theory and results. Adv Knowl Discov Data Min 180:153–180

    Google Scholar 

  • Chen W, Li W, Hou E, Bai H, Chai H, Wang D, Cui X, Wang Q (2015) Application of frequency ratio, statistical index, and index of entropy models and their comparison in landslide susceptibility mapping for the Baozhong Region of Baoji, China. Arab J Geosci 8(4):1829–1841

    Article  Google Scholar 

  • Chen C-W, Chen H, Oguchi T (2016a) Distributions of landslides, vegetation, and related sediment yields during typhoon events in northwestern Taiwan. Geomorphology 273:1–13

    Article  Google Scholar 

  • Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H (2016b) A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci 9(3):204

    Article  Google Scholar 

  • Chen W, Xie X, Peng J, Wang J, Duan Z, Hong H (2017) GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, naive-Bayes tree, and alternating decision tree models. Geomat Nat Haz Risk 8(2):950–973

    Article  Google Scholar 

  • Chen W, Pourghasemi HR, Naghibi SA (2018a) A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull Eng Geol Env 77(2):647–664

    Article  Google Scholar 

  • Chen W, Zhang S, Li R, Shahabi H (2018b) Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naive Bayes tree for landslide susceptibility modeling. Sci Total Environ 644:1006–1018

    Article  Google Scholar 

  • Chen Y, Li B, Xu Y, Zhao Y, Xu J (2019a) Field study on the soil water characteristics of shallow layers on red clay slopes and its application in stability analysis. Arab J Sci Eng 44(5):5107–5116

    Article  Google Scholar 

  • Chen Z, Liang S, Ke Y, Yang Z, Zhao H (2019b) Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China. Geocarto Int 34(4):348–367

    Article  Google Scholar 

  • Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B (2020) Modeling flood susceptibility using data-driven approaches of naive Bayes tree, alternating decision tree, and random forest methods. Sci Total Environ 701:134979

    Article  Google Scholar 

  • Cheng JW, Ooi MP-L, Chan C, Kuang YC, Demidenko S (2010) Evaluating the performance of different classification algorithms for fabricated semiconductor wafers. 2010 Fifth IEEE international symposium on electronic design, test & applications. IEEE, pp 360–366

    Chapter  Google Scholar 

  • Chung C-JF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Env 73(2):209–263

    Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008) GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54(2):311–324

    Article  Google Scholar 

  • Dai F, Lee C, Li J, Xu Z (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • de Oliveira GG, Ruiz LFC, Guasselli LA, Haetinger C (2019) Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the F o River Basin, Southern Brazil. Nat Hazards 99(2):1049–1073

    Article  Google Scholar 

  • Demir GK (2018) Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Susehri Town, Turkey. Nat Hazards 92(1):133–154

    Article  Google Scholar 

  • Ding Q, Chen W, Hong H (2017) Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int 32(6):619–639

    Google Scholar 

  • Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu Y, Zhu Z (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78(3):1749–1776

    Article  Google Scholar 

  • Fiorucci F, Ardizzone F, Mondini AC, Viero A, Guzzetti F (2019) Visual interpretation of stereoscopic NDVI satellite images to map rainfall-induced landslides. Landslides 16(1):165–174

    Article  Google Scholar 

  • Freund Y, Mason L (1999) The alternating decision tree learning algorithm. icml, pp 124–133

    Google Scholar 

  • Gheshlaghi HA, Feizizadeh B (2017) An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping. J Afr Earth Sc 133:15–24

    Article  Google Scholar 

  • Goetz J, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11

    Article  Google Scholar 

  • Guo C, Qin Y, Ma D, Xia Y, Chen Y, Si Q, Lu L (2019) Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China. Energy Sources A Recovery Util Environ Eff 43(10):1259–1273

    Article  Google Scholar 

  • Gupta V, Kumar S, Kaur R, Tandon RS (2022) Regional-scale landslide susceptibility assessment for the hilly state of Uttarakhand, NW Himalaya, India. J Earth Syst Sci 131(1):2

    Article  Google Scholar 

  • Guy RT, Santago P, Langefeld CD (2012) Bootstrap aggregating of alternating decision trees to detect sets of SNPs that associate with disease. Genet Epidemiol 36(2):99–106

    Article  Google Scholar 

  • Highland L, Bobrowsky PT (2008) The landslide handbook: a guide to understanding landslides. US Geological Survey Reston

    Google Scholar 

  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Ahmad BB (2018) Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA 163:399–413

  • Hong H, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA 133:266–281

    Article  Google Scholar 

  • Huang F, Hu S, Yan X, Li M, Wang J, Li W, Guo Z, Fan W (2022a) Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models. Bull Geol Sci Technol 41(2):79–90. https://doi.org/10.19509/j.cnki.dzkq.2021.0087

  • Huang F, Li J, Wang J, Mao D, Sheng M (2022b) Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models. Bull Geol Sci Technol 41(2):44–59. https://doi.org/10.19509/j.cnki.dzkq.2022.0010

  • Ilhem D, Yacine A, Karim Z, Thamer N, Oussama K, Samra R, Oumelkheir O, Bachir AJAjog (2022) Designing gully erosion susceptibility maps (GESM) in the Algerian Eastern Tell: a case study of the K’sob River watershed. Arab J Geosci 15(14):1264

    Article  Google Scholar 

  • Jaafari A, Najafi A, Pourghasemi H, Rezaeian J, Sattarian A (2014) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol 11(4):909–926

    Article  Google Scholar 

  • Kim MS, Onda Y, Kim JK, Kim SW (2015) Effect of topography and soil parameterisation representing soil thicknesses on shallow landslide modelling. Quatern Int 384:91–106

    Article  Google Scholar 

  • Kim S-H, Oh S-J, Yoon G-Y, Jung Y-G, Kang M-S (2017) Influence on overfitting and reliability due to change in training data. Int J Adv Cult Technol 5(2):82–89

    Google Scholar 

  • Kose DD, Turk T (2019) GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods. Phys Geogr 40(5):481–501

    Article  Google Scholar 

  • Kumar R, Anbalagan R (2019) Landslide susceptibility mapping of the Tehri reservoir rim area using the weights of evidence method. J Earth Syst Sci 128(6):153

    Article  Google Scholar 

  • Kumar S, Gupta V (2021) Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India. Nat Hazards 109(3):2461–2488

    Article  Google Scholar 

  • Kundu S, Saha A, Sharma D, Pant C (2013) Remote sensing and GIS based landslide susceptibility assessment using binary logistic regression model: a case study in the Ganeshganga Watershed, Himalayas. J Indian Soc Remote Sens 41(3):697–709

    Article  Google Scholar 

  • Lachenbruch P (1990) Generalized linear models. JSTOR

    Google Scholar 

  • Lee S, Oh H-J (2019) Landslide susceptibility prediction using evidential belief function, weight of evidence and artificial neural network models. Korean J Remote Sens 35(2):299–316

    Google Scholar 

  • Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25(11):2037–2052

    Article  Google Scholar 

  • Li H, Chen Y, Deng S, Chen M, Fang T, Tan H (2019) Eigenvector spatial filtering-based logistic regression for landslide susceptibility assessment. ISPRS Int J Geo Inf 8(8):332

    Article  Google Scholar 

  • Liu J, Duan Z (2018) Quantitative assessment of landslide susceptibility comparing statistical index, index of entropy, and weights of evidence in the Shangnan area, China. Entropy 20(11):868

    Article  Google Scholar 

  • Maalouf M, Trafalis TB, Adrianto I (2011) Kernel logistic regression using truncated Newton method. CMS 8(4):415–428

    Article  Google Scholar 

  • Mandal S, Mandal K (2018) Bivariate statistical index for landslide susceptibility mapping in the Rorachu river basin of eastern Sikkim Himalaya, India. Spat Inf Res 26(1):59–75

    Article  Google Scholar 

  • Manzo G, Tofani V, Segoni S, Battistini A, Catani F (2013) GIS techniques for regional-scale landslide susceptibility assessment: the Sicily (Italy) case study. Int J Geogr Inf Sci 27(7):1433–1452

    Article  Google Scholar 

  • Mohammadi S, Taiebat H (2016) Finite element simulation of an excavation-triggered landslide using large deformation theory. Eng Geol 205:62–72

    Article  Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the Revised Universal Soil Loss Equation: simplified method of estimation. J Soil Water Conserv 47(5):423–428

    Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94(3–4):401–418

    Article  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H, Gorum T (2011) Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, Rize, Turkey). Landslides 8(4):459–483

    Article  Google Scholar 

  • Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment using ¡°weights-of-evidence¡± applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86(1–2):12–24

    Article  Google Scholar 

  • O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690

    Article  Google Scholar 

  • Oh H-J, Kadavi PR, Lee C-W, Lee S (2018) Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomat Nat Haz Risk 9(1):1053–1070

    Article  Google Scholar 

  • Olaya V (2004) A gentle introduction to SAGA GIS, vol 208. The SAGA User Group eV, Gottingen, Germany

    Google Scholar 

  • Oommen T, Cobin PF, Gierke JS, Sajinkumar K (2018) Significance of variable selection and scaling issues for probabilistic modeling of rainfall-induced landslide susceptibility. Spat Inf Res 26(1):21–31

    Article  Google Scholar 

  • Ozdemir A (2011) Landslide susceptibility mapping using Bayesian approach in the Sultan Mountains (Ak ehir, Turkey). Nat Hazards 59(3):1573–1607

    Article  Google Scholar 

  • Park I, Lee S (2014) Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area, Korea. Int J Remote Sens 35(16):6089–6112

    Article  Google Scholar 

  • Peng J, Tong X, Wang S, Ma P (2018) Three-dimensional geological structures and sliding factors and modes of loess landslides. Environ Earth Sci 77(19):675

    Article  Google Scholar 

  • Peruccacci S, Brunetti MAT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139:79–90

    Article  Google Scholar 

  • Pham BT, Prakash I (2018) Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan area, India. Indian J Sci Technol 11:1–11

    Article  Google Scholar 

  • Pham BT, Bui DT, Prakash I, Dholakia M (2016) Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards 83(1):97–127

    Article  Google Scholar 

  • Pham BT, Bui DT, Dholakia M, Prakash I, Pham HV, Mehmood K, Le HQ (2017a) A novel ensemble classifier of rotation forest and naive Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomat Nat Haz Risk 8(2):649–671

    Article  Google Scholar 

  • Pham BT, Khosravi K, Prakash I (2017b) Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India. Environ Process 4(3):711–730

    Article  Google Scholar 

  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojtekova J, Al-Ansari N, Achu AL, Costache R, Khedher KM, Anh DT (2021) A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat Nat Haz Risk 12(1):1741–1777

    Article  Google Scholar 

  • Pourghasemi HR, Yansari ZT, Panagos P, Pradhan B (2018) Analysis and evaluation of landslide susceptibility: a review on articles published during 2005¨C2016 (periods of 2005¨C2012 and 2013¨C2016). Arab J Geosci 11(9):193

    Article  Google Scholar 

  • Pradhan AMS, Kim Y-T (2017) Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bull Eng Geol Environ 76(4):1263–1279

    Article  Google Scholar 

  • Ram P, Gupta V, Devi M, Vishwakarma N (2020) Landslide susceptibility mapping using bivariate statistical method for the hilly township of Mussoorie and its surrounding areas, Uttarakhand Himalaya. J Earth Syst Sci 129(1):167

    Article  Google Scholar 

  • Restrepo C, Vitousek P, Neville P (2003) Landslides significantly alter land cover and the distribution of biomass: an example from the Ninole ridges of Hawai’i. Plant Ecol 166(1):131–143

    Article  Google Scholar 

  • Riaz MT, Basharat M, Hameed N, Shafique M, Luo J (2018) A data-driven approach to landslide-susceptibility mapping in mountainous terrain: case study from the Northwest Himalayas, Pakistan. Nat Hazards Rev 19(4):05018007

    Article  Google Scholar 

  • Rotigliano E, Martinello C, Hernandéz MA, Agnesi V, Conoscenti CJEEE (2019) Predicting the landslides triggered by the 2009 96E/Ida tropical storms in the Ilopango caldera area (El Salvador, CA): optimizing MARS-based model building and validation strategies. Environ Earth Sci 78(6):210

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation¡ªwith a case study in the Himalayas. Landslides 2(1):61–69

    Article  Google Scholar 

  • Segoni S, Lagomarsino D, Fanti R, Casagli N (2018) Brief communication: using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat Hazard 18(3):807–812

    Article  Google Scholar 

  • Sevgen E, Kocaman S, Nefeslioglu HA, Gokceoglu C (2019) A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression. Ann Random Forest Sensors 19(18):3940

    Google Scholar 

  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I (2017a) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76(2):60

    Article  Google Scholar 

  • Shirzadi A, Chapi K, Shahabi H, Solaimani K, Kavian A, Ahmad BB (2017b) Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ Earth Sci 76(4):152

    Article  Google Scholar 

  • Shirzadi A, Soliamani K, Habibnejhad M, Kavian A, Chapi K, Shahabi H, Chen W, Khosravi K, Thai Pham B, Pradhan B (2018) Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors 18(11):3777

    Article  Google Scholar 

  • Silalahi FES, Arifianti Y, Hidayat F (2019) Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci Lett 6(1):10

    Article  Google Scholar 

  • Soria D, Garibaldi JM, Ambrogi F, Biganzoli EM, Ellis IO (2011) A ¡®non-parametric¡¯version of the naive Bayes classifier. Knowl-Based Syst 24(6):775–784

    Article  Google Scholar 

  • Stambaugh MC, Guyette RP (2008) Predicting spatio-temporal variability in fire return intervals using a topographic roughness index. For Ecol Manage 254(3):463–473

    Article  Google Scholar 

  • Su Q, Zhang J, Zhao S, Wang L, Liu J, Guo J (2017) Comparative assessment of three nonlinear approaches for landslide susceptibility mapping in a coal mine area. ISPRS Int J Geo Inf 6(7):228

    Article  Google Scholar 

  • Sujatha ER, Kumaravel P, Rajamanickam GV (2014) Assessing landslide susceptibility using Bayesian probability-based weight of evidence model. Bull Eng Geol Env 73(1):147–161

    Article  Google Scholar 

  • Sun W, Tian Y, Mu X, Zhai J, Gao P, Zhao G (2017) Loess landslide inventory map based on GF-1 satellite imagery. Remote Sensing 9(4):314

    Article  Google Scholar 

  • Sun X, Chen J, Bao Y, Han X, Zhan J, Peng W (2018) Landslide susceptibility mapping using logistic regression analysis along the Jinsha River and its tributaries close to Derong and Deqin County, Southwestern China. ISPRS Int J Geo Inf 7(11):438

    Article  Google Scholar 

  • Thai Pham B, Shirzadi A, Shahabi H, Omidvar E, Singh SK, Sahana M, Talebpour Asl D, Bin Ahmad B, Kim Quoc N, Lee S (2019) Landslide susceptibility assessment by novel hybrid machine learning algorithms. Sustainability 11(16):4386

    Article  Google Scholar 

  • Thapa PS, Adhikari BR (2019) Development of community-based landslide early warning system in the earthquake-affected areas of Nepal Himalaya. J Mt Sci 16(12):2701–2713

    Article  Google Scholar 

  • Thomas MA, Mirus BB, Collins BD, Lu N, Godt JW (2018) Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria. Landslides 15(7):1265–1277

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes models. Math Probl Eng 2012:974638

    Article  Google Scholar 

  • Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Alizadeh M, Chen W, Mohammadi A, Ahmad BB, Panahi M, Hong H (2018) Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron highlands, Malaysia. Remote Sens 10(10):1527

    Article  Google Scholar 

  • Van Westen C, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419

    Article  Google Scholar 

  • Wang Q, Li W, Chen W, Bai H (2015) GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. J Earth Syst Sci 124(7):1399–1415

    Article  Google Scholar 

  • Wang Q, Li W, Wu Y, Pei Y, Xie P (2016) Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environ Earth Sci 75(7):599

    Article  Google Scholar 

  • Wang ZW, Zhang JH, Li DY (2014) Application of fuzzy weights of evidence method in landslide susceptibility assessment based on GIS. Advanced materials research. Trans Tech Publ, pp 2756–2759

    Google Scholar 

  • Wu Y, Li W, Liu P, Bai H, Wang Q, He J, Liu Y, Sun S (2016a) Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province, China. Environ Earth Sci 75(5):422

    Article  Google Scholar 

  • Wu Y, Li W, Wang Q, Liu Q, Yang D, Xing M, Pei Y, Yan S (2016b) Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arab J Geosci 9(2):84

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72(1):1–12

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

  • Yilmaz IK (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat¡ªTurkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region. Saudi Arabia Landslides 13(5):839–856

    Article  Google Scholar 

  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B (2013) Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci 6(8):2873–2888

    Article  Google Scholar 

  • Zhang T, Han L, Chen W, Shahabi H (2018) Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy 20(11):884

    Article  Google Scholar 

  • Zhao C, Jiang L, Lu X, Xiao X (2019) Analysis of wet soil granular flow down inclined chutes using discrete element method. Water 11(11):2399

    Article  Google Scholar 

Download references

Funding

This study was supported by the Innovation Capability Support Program of Shaanxi (Program No. 2020KJXX-005) and Shaanxi Key Research Programme on QINCHUANGYUAN Scientist and Engineer Project (No.2023KXJ-134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Yang, Z. Landslide susceptibility modeling using bivariate statistical-based logistic regression, naïve Bayes, and alternating decision tree models. Bull Eng Geol Environ 82, 190 (2023). https://doi.org/10.1007/s10064-023-03216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03216-1

Keywords

Navigation