Skip to main content
Log in

Elastic modulus estimation of weak rock samples using random forest technique

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Many artificial intelligence-based predictive techniques have been developed for assessing elastic modulus (E) of rocks using results of simple rock index tests. However, most of them are related to artificial neural networks (ANNs). On the other hand, developing a feasible and easy-to-use model is still of interest more specifically when the datasets of the developed models are based on new experimental data. This study investigates the workability of tree-based techniques including random forest (RF), AdaBoost, extreme gradient boosting, and CatBoost. Utilization of the aforementioned techniques in developing predictive models of E for weak rock samples is relatively new. Nevertheless, for model construction, a suitable database obtained from laboratory experiments on different weak rock types, i.e., marl, siltstone, claystone, and limestone, was prepared. Input parameters of the tree-based model comprises rock index tests which are simple, cheap, and available in any geotechnical laboratory. Then, the aforementioned tree-based models were designed and tuned. Level of performance prediction was assessed using a ranking system which was based on statistical indices such as coefficient of determination (R2), mean absolute error (MAE), and variance account for (VAF). Overall, RF model was able to make a prediction results close to the measured elastic moduli of weak rock samples in laboratory. Additionally, using 30 extra sets of data, the proposed predictive model was validated. R2, MAE, and VAF of the validation data were 0.91, 0.597, and 91, respectively which confirm the feasibility of the proposed model in assessing the elastic modulus of weak rocks during site investigation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abdi Y, Garavand AT, Sahamieh RZ (2018) Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis. Arab J Geosci 11:587

    Article  Google Scholar 

  • Acar MC, Kaya B (2020) Models to estimate the elastic modulus of weak rocks based on least square support vector machine. Arab J Geosci 13:590. https://doi.org/10.1007/s12517-020-05566-6

    Article  Google Scholar 

  • Aladejare AE, Alofe ED, Onifade M et al (2021) Empirical estimation of uniaxial compressive strength of rock: database of simple, multiple, and artificial intelligence-based regressions. Geotech Geol Eng 39:4427–4455

    Article  Google Scholar 

  • Armaghani DJ, Harandizadeh H, Momeni E et al (2022a) An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity. Springer, Netherlands

    Book  Google Scholar 

  • Armaghani DJ, Harandizadeh H, Momeni E (2022b) Load carrying capacity assessment of thin-walled foundations: an ANFIS–PNN model optimized by genetic algorithm. Eng Comput 38(Suppl 5):4073–4095. https://doi.org/10.1007/s00366-021-01380-0

  • Armaghani DJ, Mohamad ET, Momeni E, Narayanasamy MS (2015) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ 74:1301–1319

    Article  Google Scholar 

  • Armaghani DJ, Momeni E, Asteris P (2020) Application of group method of data handling technique in assessing deformation of rock mass. Metaheuristic Comput Appl 1:1–18

    Google Scholar 

  • Armaghani DJ, Yagiz S, Mohamad ET, Zhou J (2021) Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches. Tunn Undergr Sp Technol 118:104183

    Article  Google Scholar 

  • Asteris PG, Mamou A, Hajihassani M et al (2021) Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks. Transp Geotech 29:100588

    Article  Google Scholar 

  • Asteris PG, Rizal FIM, Koopialipoor M et al (2022) Slope stability classification under seismic conditions using several tree-based intelligent techniques. Appl Sci 12:1753

    Article  Google Scholar 

  • Basser H, Karami H, Shamshirband S et al (2015) Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike. Appl Soft Comput 30:642–649

    Article  Google Scholar 

  • Behzadafshar K, Sarafraz ME, Hasanipanah M et al (2019) Proposing a new model to approximate the elasticity modulus of granite rock samples based on laboratory tests results. Bull Eng Geol Environ 78:1527–1536

    Article  Google Scholar 

  • Beiki M, Majdi A, Givshad A (2013) Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. J Rock Mech Min Sci 63:159–169

    Article  Google Scholar 

  • Bejarbaneh BY, Bejarbaneh EY, Fahimifar A et al (2018) Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems. Bull Eng Geol Environ 77:345–361

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, pp 785–794

    Chapter  Google Scholar 

  • Ding W, Nguyen MD, Mohammed AS et al (2021) A new development of ANFIS-Based Henry gas solubility optimization technique for prediction of soil shear strength. Transp Geotech 29:100579

    Article  Google Scholar 

  • Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. arXiv Prepr. arXiv181011363

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Ghanizadeh AR, Ghanizadeh A, Asteris PG et al (2022) Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transp Geotech 38:100906

    Article  Google Scholar 

  • Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72

    Article  Google Scholar 

  • Harandizadeh H, Armaghani D, Asteris PGGA (2021) TBM performance prediction developing a hybrid ANFIS-PNN predictive model optimized by imperialism competitive algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06217-x

    Article  Google Scholar 

  • Hasanipanah M, Monjezi M, Shahnazar A et al (2015) Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement 75:289–297

    Article  Google Scholar 

  • He B, Armaghani DJ, Lai SH (2023) Assessment of tunnel blasting-induced overbreak: A novel metaheuristic-based random forest approach. Tunn Undergr Sp Technol 133:104979

    Article  Google Scholar 

  • Huat CY, Moosavi SMH, Mohammed AS et al (2021) Factors influencing pile friction bearing capacity: proposing a novel procedure based on gradient boosted tree technique. Sustainability 13:11862

    Article  Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. Ulusay, R. and Hudson, J.A., Eds., Ankara

  • Kamran M (2021) A state of the art catboost-based T-distributed stochastic neighbor embedding technique to predict back-break at dewan cement limestone quarry. J Min Environ 12:679–691. https://doi.org/10.22044/jme.2021.11222.2104

    Article  Google Scholar 

  • Khandelwal M, Singh TN (2011) Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. Arab J Geosci 4:435–442

    Article  Google Scholar 

  • Koopialipoor M, Asteris PG, Mohammed AS et al (2022) Introducing stacking machine learning approaches for the prediction of rock deformation. Transp Geotech 34:100756

    Article  Google Scholar 

  • Lashkaripour GR (2002) Predicting mechanical properties of mudrock from index parameters. Bull Eng Geol Environ 61:73–77

    Article  Google Scholar 

  • Li C, Zhou J, Tao M et al (2022) Developing hybrid ELM-ALO, ELM-LSO and ELM-SOA models for predicting advance rate of TBM. Transp Geotech 36:100819

    Article  Google Scholar 

  • Majdi A, Beiki M (2010) Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. Int J Rock Mech Min Sci 47(2):246–253

  • Manouchehrian A, Sharifzadeh M, Moghadam RH, Nouri T (2013) Selection of regression models for predicting strength and deformability properties of rocks using GA. Int J Min Sci Technol 23:495–501

    Article  Google Scholar 

  • Marto A, Hajihassani M, Momeni E (2014) Bearing capacity of shallow foundation’s prediction through hybrid artificial neural networks. Applied mechanics and materials. Trans Tech Publ, pp 681–686

    Google Scholar 

  • Mohamad ET, Armaghani DJ, Momeni E et al (2016) Rock strength estimation: a PSO-based BP approach. Neural Comput Appl 30:1635–1646. https://doi.org/10.1007/s00521-016-2728-3

    Article  Google Scholar 

  • Mohamad ET, Jahed Armaghani D, Momeni E et al (2015) Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull Eng Geol Environ 74:745–757. https://doi.org/10.1007/s10064-014-0638-0

  • Momeni E, Abdi Y (2022) Application of group method of data handling (GMDH) technique in predicting UCS of limestones. Iran J Eng Geol 15

  • Momeni, E., He, B., Abdi, Y., & Armaghani, D. J. (2023). Novel hybrid XGBoost model to forecast soil shear strength based on some soil index tests. CMES - Comput Model Eng Sci 136(3)

  • Momeni E, Nazir R, Armaghani DJ, Maizir H (2014) Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57:122–131

    Article  Google Scholar 

  • Momeni E, Omidinasab F, Dalvand A et al (2022) Flexural strength of concrete beams made of recycled aggregates: An experimental and soft computing-based study. Sustainability 14:11769

    Article  Google Scholar 

  • Momeni E, Poormoosavian M, Mahdiyar A, Fakher A (2018) Evaluating random set technique for reliability analysis of deep urban excavation using Monte Carlo simulation. Comput Geotech 100:203–215

    Article  Google Scholar 

  • Momeni E, Poormoosavian M, Tehrani HS, Fakher A (2021a) Reliability analysis and risk assessment of deep excavations using random-set finite element method and event tree technique. Transp Geotech 29:100560

    Article  Google Scholar 

  • Momeni E, Yarivand A, Dowlatshahi MB, Armaghani DJ (2021b) An efficient optimal neural network based on gravitational search algorithm in predicting the deformation of geogrid-reinforced soil structures. Transp Geotech 26:100446

    Article  Google Scholar 

  • Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9:14–19

    Article  Google Scholar 

  • Murlidhar B, Bejarbaneh B, Armaghani D et al (2020) Application of tree-based predictive models to forecast air overpressure induced by mine blasting. Nat Resour Res. https://doi.org/10.1007/s11053-020-09770-9

    Article  Google Scholar 

  • Nazir R, Momeni E, Marsono K, Maizir H (2015) An artificial neural network approach for prediction of bearing capacity of spread foundations in sand. J Teknol 72:9–14

    Google Scholar 

  • Ocak I, Seker SE (2012) Estimation of elastic modulus of intact rocks by artificial neural network. Rock Mech Rock Eng 45:1047–1054

    Article  Google Scholar 

  • Parsajoo M, Armaghani DJ, Asteris PG (2022) A precise neuro-fuzzy model enhanced by artificial bee colony techniques for assessment of rock brittleness index. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06600-8

    Article  Google Scholar 

  • Parsajoo M, Armaghani DJ, Mohammed AS et al (2021) Tensile strength prediction of rock material using non-destructive tests: a comparative intelligent study. Transp Geotech 31:100652. https://doi.org/10.1016/J.TRGEO.2021.100652

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Pham BT, Nguyen MD, Nguyen-Thoi T et al (2020) A novel approach for classification of soils based on laboratory tests using Adaboost. Tree and ANN modeling. Transp Geotech 27:100508. https://doi.org/10.1016/j.trgeo.2020.100508

    Article  Google Scholar 

  • Prokhorenkova L, Gusev G, Vorobev A et al (2018) Catboost: unbiased boosting with categorical features. Adv Neural Inf Process Syst 2018-Decem:6638–6648

  • Rätsch G, Onoda T, Müller K-R (2001) Soft margins for AdaBoost. Mach Learn 42:287–320

    Article  Google Scholar 

  • Rezaei M (2018) Indirect measurement of the elastic modulus of intact rocks using the Mamdani fuzzy inference system. Meas J Int Meas Confed 129:319–331. https://doi.org/10.1016/j.measurement.2018.07.047

    Article  Google Scholar 

  • Roy DG, Singh TN (2018) Regression and soft computing models to estimate young’s modulus of CO2 saturated coals. Measurement 129:91–101

    Article  Google Scholar 

  • Sachpazis CI (1990) Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bull Int Assoc Eng Geol L’association Int Géologie L’ingénieur 42:75–83

    Article  Google Scholar 

  • Saedi B, Mohammadi SD, Shahbazi H (2018) Prediction of uniaxial compressive strength and elastic modulus of migmatites using various modeling techniques. Arab J Geosci 11:1–14

    Article  Google Scholar 

  • Shan F, He X, Armaghani DJ et al (2022) Success and challenges in predicting TBM penetration rate using recurrent neural networks. Tunn Undergr Sp Technol 130:104728

    Article  Google Scholar 

  • Singh R, Kainthola A, Singh TN (2012) Estimation of elastic constant of rocks using an ANFIS approach. Appl Soft Comput 12:40–45

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  • Torabi-Kaveh M, Naseri F, Saneie S, Sarshari B (2015) Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab J Geosci 8:2889–2897

    Article  Google Scholar 

  • Wang S, Zhou J, Li C et al (2021) Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques. J Cent South Univ 28:527–542

    Article  Google Scholar 

  • Wang Y, Rezaei M, Abdullah RA, Hasanipanah M (2023) Developing two hybrid algorithms for predicting the elastic modulus of intact rocks. Sustainability 15(5):4230

  • Waqas U, Ahmed MF (2020) Prediction modeling for the estimation of dynamic elastic Young’s modulus of thermally treated sedimentary rocks using linear–nonlinear regression analysis, regularization, and ANFIS. Rock Mech Rock Eng 53:5411–5428

    Article  Google Scholar 

  • Yang H, Wang Z, Song K (2020) A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng Comput. https://doi.org/10.1007/s00366-020-01217-2

    Article  Google Scholar 

  • Yang H, Song K, Zhou J (2022) Automated recognition model of geomechanical information based on operational data of tunneling boring machines. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-021-02723-5

    Article  Google Scholar 

  • Yang L, Feng X, Sun Y (2019) Predicting the Young’s Modulus of granites using the Bayesian model selection approach. Bull Eng Geol Environ 78:3413–3423

    Article  Google Scholar 

  • Yaşar E, Erdoğan Y (2004) Estimation of rock physicomechanical properties using hardness methods. Eng Geol 71:281–288

    Article  Google Scholar 

  • Zhao H, Zhang L, Ren J, Wang M, Meng Z (2022) AdaBoost-based back analysis for determining rock mass mechanical parameters of claystones in goupitan tunnel, China. Buildings 12(8):1073

  • Zhou J, Qiu Y, Armaghani DJ et al (2020) Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques. Geosci Front. https://doi.org/10.1016/j.gsf.2020.09.020

    Article  Google Scholar 

  • Zhou Z, Hooker G (2021) Unbiased measurement of feature importance in tree-based methods. ACM Trans Knowl Discov from Data 15:1–21

    Google Scholar 

  • Zorlu K, Gokceoglu C, Ocakoglu F et al (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96:141–158

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments which enhance the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Momeni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Appendix A. Dataset used in this study

Appendix A. Dataset used in this study

Sample No.

Lithology

n (%)

ρdry (gr/cm3)

VP (m/sec)

Id2 (%)

Abs (%)

E (GPa)

S1

Claystone

56.55

1.95

1011.53

63.27

26.54

1.23

S2

Claystone

20.28

1.99

1491.57

83.52

10.16

2.12

S3

Claystone

32.84

1.98

1178.34

79.31

20.54

1.52

S4

Claystone

37.03

1.95

1649.43

83.44

21.19

3.61

S5

Claystone

22.91

1.96

1379.41

50.28

11.12

1.42

S6

Claystone

16.12

1.95

1436.49

44.25

8.67

3.15

S7

Claystone

16.77

1.61

1664.48

22.75

9.66

3.41

S8

Claystone

40.48

1.93

1389.12

85.18

23.12

1.56

S9

Claystone

30.18

1.99

1770.77

95.43

17.34

1.28

S10

Claystone

24.69

1.96

2195.09

84.58

14.32

2.64

S11

Claystone

10.93

2.01

3002.23

70.07

6.12

3.12

S12

Claystone

36.56

1.97

1326.43

75.37

19.08

1.62

S13

Claystone

27.25

1.90

1548.28

63.56

15.18

2.41

S14

Claystone

26.57

1.97

2089.30

83.82

15.23

2.15

S15

Claystone

30.35

1.92

1474.33

67.49

16.48

2.14

S16

Claystone

26.81

1.92

1605.84

69.86

15.12

2.30

S17

Claystone

26.66

1.88

1503.79

57.18

14.75

2.63

S18

Claystone

28.52

1.94

1656.91

70.14

15.62

2.23

S19

Claystone

28.09

1.95

1778.37

74.79

15.67

2.19

S20

Claystone

26.64

1.94

1706.65

70.65

14.87

2.30

S21

Limestone

11.32

2.32

2350.00

95.06

4.56

4.32

S22

Limestone

11.39

2.39

2430.00

95.76

3.52

4.51

S23

Limestone

13.75

2.39

2350.00

95.01

4.65

3.85

S24

Limestone

7.82

2.40

2450.00

95.14

2.51

4.11

S25

Limestone

10.85

2.38

2790.00

96.21

4.35

4.11

S26

Limestone

11.58

2.35

2660.00

96.54

3.87

5.32

S27

Limestone

12.32

2.14

2010.00

96.13

5.76

4.67

S28

Limestone

13.94

2.12

2130.00

96.10

6.58

3.92

S29

Marl

23.10

2.38

2060.80

86.00

11.20

6.54

S30

Marl

24.30

2.40

2154.10

85.40

12.30

8.12

S31

Marl

24.80

2.37

2090.30

86.40

10.40

8.62

S32

Marl

13.20

2.61

2701.60

87.30

6.30

9.43

S33

Marl

16.70

2.54

2665.10

87.90

7.50

9.23

S34

Marl

22.20

2.43

1944.00

85.80

10.80

9.23

S35

Marl

24.40

2.43

1887.00

85.70

12.10

5.25

S36

Marl

26.60

2.29

1526.34

85.80

13.00

5.72

S37

Marl

16.00

2.48

2592.40

86.50

5.70

10.45

S38

Marl

26.40

2.35

1766.70

84.60

16.40

7.54

S39

Marl

32.70

2.24

1245.70

84.40

15.30

4.23

S40

Marl

31.50

2.30

1303.60

84.70

14.00

5.01

S41

Marl

19.60

2.39

2156.80

86.50

10.80

9.32

S42

Marl

20.30

2.42

2165.40

86.30

10.10

8.34

S43

Marl

25.30

2.98

1476.40

84.40

13.90

4.38

S44

Marl

26.83

2.34

1739.07

85.90

12.37

7.23

S45

Marl

21.33

2.43

2226.05

86.30

9.77

11.04

S46

Marl

17.95

2.44

2412.35

87.55

9.30

9.26

S47

Marl

16.75

2.52

2577.90

87.30

7.70

10.23

S48

Marl

21.30

2.39

2259.60

86.15

9.35

10.56

S49

Marl

19.95

2.41

2161.10

86.40

10.45

7.32

S50

Marl

22.33

2.40

2135.40

86.00

10.27

8.21

S51

Marl

32.10

2.27

1274.65

84.55

14.65

6.50

S52

Marl

23.70

2.39

2107.45

85.70

11.75

8.37

S53

Marl

26.83

2.34

1739.07

85.90

12.37

7.64

S54

Marl

19.25

2.80

2233.40

86.35

9.60

13.23

S55

Marl

19.60

2.60

2197.25

86.38

10.03

10.32

S56

Marl

19.13

2.46

2436.80

86.70

9.07

9.76

S57

Siltstone

29.92

2.05

1520.36

62.78

14.54

3.56

S58

Siltstone

30.14

2.05

1289.44

64.88

15.12

2.51

S59

Siltstone

16.84

2.02

2421.30

33.40

9.56

4.01

S60

Siltstone

25.34

2.05

1798.32

28.46

12.34

2.08

S61

Siltstone

23.24

2.02

1472.99

66.82

11.13

2.15

S62

Siltstone

16.73

2.03

2134.24

75.65

8.32

4.31

S63

Siltstone

36.24

2.03

1608.10

75.14

20.23

2.67

S64

Siltstone

40.14

2.05

1345.63

76.55

22.54

2.09

S65

Siltstone

42.90

2.00

1123.45

72.08

19.45

1.12

S66

Siltstone

42.55

2.09

1278.12

45.12

18.86

1.41

S67

Siltstone

8.44

2.20

2197.11

79.76

3.45

3.89

S68

Siltstone

5.44

2.19

2196.69

63.54

2.65

3.32

S69

Siltstone

46.83

2.14

1410.63

53.99

22.12

1.25

S70

Siltstone

18.20

2.07

2195.09

68.30

8.76

2.12

S71

Siltstone

19.11

2.06

3186.71

81.99

10.34

3.34

S72

Siltstone

15.73

2.02

2315.37

77.06

8.65

2.54

S73

Siltstone

17.56

2.00

2254.23

54.73

10.15

2.67

S74

Siltstone

18.25

2.01

1547.00

61.13

10.73

2.56

S75

Siltstone

26.08

2.01

1387.32

90.48

15.65

2.32

S76

Siltstone

26.07

2.00

1591.53

61.20

14.54

3.76

S77

Siltstone

15.00

2.09

1841.58

53.42

7.65

2.23

S78

Siltstone

15.77

2.02

2325.94

73.45

8.12

3.11

S79

Siltstone

16.61

2.05

2601.56

61.51

9.65

3.43

S80

Siltstone

39.42

2.03

1315.65

74.07

22.05

1.30

S81

Siltstone

7.21

2.02

3250.45

75.77

3.43

3.81

S82

Siltstone

9.10

2.00

3123.12

73.24

5.12

1.65

S83

Siltstone

16.01

2.06

2756.34

43.12

9.13

2.51

S84

Siltstone

20.73

2.06

1675.32

81.27

12.54

3.86

S85

Siltstone

11.71

1.95

2874.32

47.37

5.23

3.67

S86

Siltstone

17.46

2.62

2300.41

44.73

8.67

3.56

S87

Siltstone

32.05

2.00

1143.56

52.17

18.34

1.45

S88

Siltstone

12.17

2.01

2891.21

74.08

7.32

3.27

S89

Siltstone

11.57

2.05

2956.42

57.21

6.34

3.64

S90

Siltstone

18.25

2.06

2474.87

64.22

10.13

2.85

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, Y., Momeni, E. & Armaghani, D.J. Elastic modulus estimation of weak rock samples using random forest technique. Bull Eng Geol Environ 82, 176 (2023). https://doi.org/10.1007/s10064-023-03154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03154-y

Keywords

Navigation