Skip to main content
Log in

Candidate areas for wastewater stabilization ponds utilizing GIS and metal adsorption capacities of native clayey deposits: Mornag case study (NE Tunisia)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The main objective was to determine candidate areas for proposed wastewater stabilization ponds (WSPs) to treat municipal wastewater from rural communities in Mornag, Tunisia. To attain our goal, geology, topography, proximity to surface water, proximity to residential areas and proximity to main roads were gathered and analyzed in a geographic information system. For each criterion, a suitability map was created by classifying the study region into two discrete categories: suitable and unsuitable areas. A final suitability map showing candidate areas for WSPs was produced by overlaying different resulting criteria maps. Then, batch adsorption experiments and infiltration–percolation tests by experimental column were carried out to determine the efficiency removal of native clayey deposits of candidate areas for Pb, Cd and Cu in the presence or absence of organic matter, in order to verify their potential use as filter substrate of heavy metals from treated wastewater by WSPs. The performances of filter materials used in wastewater treatment systems were determined. Thus, their lifetime could be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarez PM, Beltrán, FJ & Garcia-Araya JF (2001) Ph sequential ozonation of domestic and winedistillery wastewaters. Water Res. 35(4):929-936.

  • Arthur JP, Mundial B (1983) Notes on the design and operation of waste stabilization ponds in warm climates of developing countries. BIRF Technical Paper. World Bank

  • Aydi A, Abichou T, Hamdi Nasr I, Louati M, Zairi M (2016) Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS. Environ Monit Assess 188:59

    Article  Google Scholar 

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  • Barriuso E, Baer U, Calvet R (1992) Dissolved of organic matter and adsorption-desorption of Dimefuron, atrazine, and carbetamide by soils. J Environ Qual 21(3):359–367

    Article  Google Scholar 

  • Bigorre F (2000) Intégration des fonctions avancées à l’inter-strate des pièces réalisées par procédé de stratoconception méthodologie et développement des outils associés. Thèse de doctorat. Université Henri Poincarré-Nancy, France

  • Brindley GW, Brown G (1980) Crystal structures of clay minerals and their x-ray identification. Mineralogical Society, London

    Book  Google Scholar 

  • Chaari I, Fakhfakh E, Chakroun S et al (2008) Lead removal from aqueous solutions by a Tunisian smectitic clay. J Hazard Mater 156:545–551

    Article  Google Scholar 

  • Chairidchai P, Ritchie, GSP (1990) Zinc adsorption by a lateritic soil in the presence of organic ligands. Soil Sci. SOC. Am. J. 54:1242–1248

  • Chalermyanont T, Arrykul S, Charoenthaisong N (2009) Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals. Waste Manag 29:117–127

    Article  Google Scholar 

  • Chen M, Li XM, Yang Q, Zeng GM, Zhang Y (2008) Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-Sounth region of China. J Hazard Mater 160:324–329

    Article  Google Scholar 

  • Covelo EF, Vega FA, Andrade ML (2007) Competitive sorption and desorption of heavy metals by individual soil components. Journal of hazardous materials 140, 308–315. Jain, C.K., Sharma, M.K., 2002. Adsorption of cadmium on bed sediments of river Hindon: adsorption models and kinetics. Water Air Soil Pollut 137:1–19

    Google Scholar 

  • D.G.R.E. (2000) Annuaire de l’Exploitation des Nappes. D.G.R.E., Tunis

  • Drizo A, Comeau Y, Forget C, Chapuis RP (2002) Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetlands systems. Environ Sci Technol 36:4642–4648

    Article  Google Scholar 

  • El Herradi E, Boujaber G, Naman M, Laamyem A, El Adlouni C (2016) Treatment of oil mill wastewaters by infiltration-percolation on two types of filters based on soil, sand and fly ash. J Mater Environ Sci 7(3):820–827

    Google Scholar 

  • Ennabli M (1967) Caractéristiques de l’aquifère captif de la région de Mornag. Bureau de l’Inventaire et des Recherches Hydrauliques, Tunis, Rapp intrn

  • Ferronato C, Silva B, Costa F, Tavares T (2016) Vermiculite bio-barriers for cu and Zn remediation: an ecofriendly approach for freshwater and sediments protection. Int J Environ Sci Technol 13:1219–1228

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  Google Scholar 

  • Gemitzi A, Tsihrintzis VS, Christou O, Petalas C (2007) Use of GIS in siting stabilization pond facilities for domestic wastewater treatment. J Environ Manag 82:155–166

    Article  Google Scholar 

  • Harter RD (1992) Competitive sorption of cobalt, copper and nickel ions by calcium saturated soil. Soil Sci Soc Am J 56:444–449

    Article  Google Scholar 

  • Harter RD, Naidu R (2001) An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci Soc Am J 65:597–612

    Article  Google Scholar 

  • Hatje V, Payne TE, Hill DM, McOris G, Birch GF, Szymczak R (2003) Kinetics of trace element uptake and release by particle in estuarin waters: effects of pH, salinity and particle loading. Environ Int 29:619–629

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Advanced course. Dept. of soils, University of Wisconsin, Madison

  • Jain CK, Sharma MK (2002) Adsorption of cadmium on bed sediments of river Hindon: adsorption models and kinetics. Water Air Soil Pollut 137:1–19

    Article  Google Scholar 

  • Kallali H, Anane M, Jellali S, Tarhouni J (2007) GIS-based multi-criteria analysis for potential wastewater aquifer recharge sites. Desalination 215:111–119

    Article  Google Scholar 

  • Kehl O, Wichern M, Lubken M, Horn H (2009) Analysis of design approaches for stabilization ponds under different boundary conditions—a comparison. Ecol Eng 35:1117–1128

    Article  Google Scholar 

  • Khazali O, Abu-El-Halawa R, Al-Sou’od K (2007) Removal of copper(II) from aqueous solution by Jordanian pottery materials. J Hazard Mater 139:67–71

    Article  Google Scholar 

  • Lajmi T (1968) Contribution à l’étude géologique et hydrogéologique de la plaine de Mornag. Note du Service Géologique, Tunis

    Google Scholar 

  • Lim HS, Lim W, Hu JY, Ziegler A, Ong SL (2015) Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J Environ Manag 147:24–33

    Article  Google Scholar 

  • Mahmood-ul-Hassan M, Akhtar MS, Nabi G (2008) Boron and zinc transport through intact columns of calcareous soils. Pedosphere, 18, 524–532.

  • Mara D, Pearson H (1998) Design manual for waste stabilization ponds in Mediterranean countries. Lagoon Technology International, Leeds

    Google Scholar 

  • Mara DD, Alabaster GP, Pearson HW (1992) Waste stabilization ponds: a design manual for eastern Africa. Lagoon Technology International, Leeds

    Google Scholar 

  • Mouni L, Merabet D, Robert D, Bouzaza A (2009) Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+onto Amizour soil (Algeria). Geoderma 154:30–35

    Article  Google Scholar 

  • Ouelhazi H (2016) Etude de l’impact de la recharge artificielle par les eaux usées traitées sur l’évolution des caractéristiques de la nappe phréatique de côte orientale de Cap-Bon (zone de Korba). Thèse Faculté des Sciences de Tunis

  • Phillips IR (1999) Copper, lead, cadmium, and zinc sorption by waterlogged and air-dry soil. J Soil Contam 8:343–364

    Article  Google Scholar 

  • Ragush CM, Schmidt JJ, Krkosek WH et al (2015) Performance of municipal waste stabilization ponds in the 739 Canadian Arctic. Ecol Eng 83:413–421

    Article  Google Scholar 

  • Reddy KR, Xie T, Dastgheibi S (2014) Removal of heavy metals from urban stormwater runoff using different filter materials. J Environ Chem Eng 2:282–292

    Article  Google Scholar 

  • Sakadevan K, Bavor H (1998) Phosphate adsorption characteristics of soils, slags, and zeolites to be used as substrates in constructed wetland systems. Water Res 32:393–399

    Article  Google Scholar 

  • Schoeller H (1948) Les variations de la composition chimique de l’eau dans les nappes souterraines. Ass Int Hydrol Sci, Vol III

  • Schwab AP, He YH, Banks, MK (2005) The influence of organic ligands on the retention of lead in soil. Chemosphere. 61, 856–866.

  • Sener B, Suzen L, Doyuran V (2006) Landfill site selection by using geographic information systems. Environ Geol 49:376–388

    Article  Google Scholar 

  • Serrano S, Garrido F, Campbel CG, Garcia-Gonzalez MT (2005) Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 124:91–104

    Article  Google Scholar 

  • Sharifi M, Hadidi M, Vessali E, Mosstafakhani P, Taheri K, Shahoie S, Khodamoradpour M (2009) Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran. Waste Manag 29(10):2740–2758

    Article  Google Scholar 

  • Shilton AN, Mara DD (2005) CFD (computational fluid dynamics) modeling of baffles for optimizing tropical waste stabilization ponds system. Water Sci Technol 51:103–106

    Article  Google Scholar 

  • Steinmann CR, Weinhard S, Melzer A (2003) A combined system of lagoon and constructed wetland for an effective wastewater treatment. Water Res 37:2035–2042

    Article  Google Scholar 

  • Sulaymon AH, Sharif AO, Al-Shalchi TK (2011) Removal of cadmium from simulated wastewaters by electrodeposition on stainless steeel tubes bundle electrode. Desalin Water Treat 29:218–226

    Article  Google Scholar 

  • Thorez J (1975) Phyllosilicates and clay minerals - a laboratory handbook for their x-ray diffraction analysis. Lelotte, Liege

  • Usman ARA (2008) The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 144:334–343

    Article  Google Scholar 

  • Veeresh H, Tripathy S, Chaudhuri D et al (2003) Competitive adsorption behavior of selected heavy metals in three soil types of India amended with fly ash and sewage sludge. Environ Geol 44:363–370

    Article  Google Scholar 

  • Walker DJ, Clemente R, Roig A, Bernal P (2003) The effect of soil amendment on heavy metal bioavailability in two contaminated Mediterranean soils. Environ Pollut 122:303–312

    Article  Google Scholar 

  • Wang YS, Feng MH, Shan XQ et al (2009) Effects of copper, lead and cadmium on the sorption of 2,4,6-trichlorophenol onto and desorption from wheat ash and two commercial humic acids. Environ Sci Technol 43:5726–5731

    Article  Google Scholar 

  • WHO (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Technical Report Series 778. World Health Organization, Geneva

  • Wu XL, Donglin Z, Yang ST (2011) Impact of solution chemistry conditions on the sorption behavior of cu(II) on Lin’an montmorillonite. Desalination 269:84–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Charef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayari, J., Azouzi, R., Charef, A. et al. Candidate areas for wastewater stabilization ponds utilizing GIS and metal adsorption capacities of native clayey deposits: Mornag case study (NE Tunisia). Bull Eng Geol Environ 78, 4567–4578 (2019). https://doi.org/10.1007/s10064-018-1376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-018-1376-5

Keywords

Navigation