Skip to main content

Advertisement

Log in

Debris flow hazard assessment by combining numerical simulation and land utilization

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Debris flow has caused serious human casualties and economic losses in the main earthquake-hit areas affected by the Wenchuan earthquake. As one of the important and effective means of non-engineering disaster mitigation, debris flow hazard assessment is a key issue for the sustainable economic and social development of earthquake-hit areas. This article illustrates a new method to quantify the debris flow hazard by combining debris flow simulated results with different land utilization within the influence area. The Guo Juanyan gully in Dujiangyan city, Sichuan province, China, located in the meizoseismal area of the Wenchuan earthquake, was selected as the study area. The rainfall characteristics, including the rainfall pattern and the 10-min, 1-h, and 24-h critical rainfalls, were fully explored first. Then, the numerical simulation method was applied as a modeling tool to simulate debris flow influence area and final buried depth under rainfall with different return periods. The simulated results under a 100-year return period rainfall were validated based on field measurements. Finally, the debris flow hazard maps under different return periods were overlapped by combining the simulated results and the types of land utilization. The proposed method can enhance the accuracy of debris flow hazard assessment and can be widely used for debris flow mitigation, which has important application value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Armanini A, Fraccarollo L, Rosatti G (2009) Two-dimensional simulation of debris flows in erodible channels. Comput Geosci 35(5):993–1006. doi:10.1016/j.cageo.2007.11.008

    Article  Google Scholar 

  • Berti M, Simoni A (2005) Experimental evidences and numerical modeling of debris flow initiated by channel runoff. Landslide 2(3):171–182. doi:10.1007/s10346-005-0062-4

    Article  Google Scholar 

  • Chen H, Lee CF (2000) Numerical simulation of debris flow. Can Geotech J 37(1):146–160. doi:10.1139/t99-089

    Article  Google Scholar 

  • Chen NS, Yue ZQ, Cui P et al (2007a) A rational method for estimating maximum discharge of a and slide-induced debris flow: a case study from southwestern China. Geomorphology 84(1):44–58. doi:10.1016/j.geomorph.2006.07.007

    Article  Google Scholar 

  • Chen CC, Tseng CY, Dong JJ (2007b) New entropy-based method for variables selection and its application to the debris-flow hazard assessment. Eng Geol 94(1):19–26. doi:10.1016/j.enggeo.2007.06.004

    Article  Google Scholar 

  • Chen NS, Yang CL, Zhou W et al (2009) The critical rainfall characteristics for torrents and debris flows in the Wenchuan earthquake stricken area. J Mt Sci 6:362–372. doi:10.1007/s11629-009-1064-9

    Article  Google Scholar 

  • Chen XQ, Cui P, You Y et al (2015) Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area. Eng Geol 194:73–85. doi:10.1016/j.enggeo.2014.10.002

    Article  Google Scholar 

  • Chen HX, Zhang S, Peng M et al (2016) A physically-based multi-hazard risk assessment platform for regional rainfall-induced slope failures and debris flows. Eng Geol 203:15–29. doi:10.1016/j.enggeo.2015.12.009

    Article  Google Scholar 

  • Chua KT, Lo KH (2004) Hazard assessment of debris flow for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations. Nat Hazards Earth Syst Sci 4:103–116

    Article  Google Scholar 

  • Cui P, Wei FQ, He SM et al (2008) Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation. J Mt Sci 26(3):280–282 (in Chinese)

    Google Scholar 

  • Cui P, Hu KH, Zhuang JQ et al (2011) Prediction of debris-flow danger area by combining hydrological and inundation simulation methods. J Mt Sci 8(1):1–9. doi:10.1007/s11629-011-2040-8

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A et al (2009) Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan. Environ Geol 56(7):1295–1310. doi:10.1007/s00254-008-1228-x

    Article  Google Scholar 

  • Dong JJ, Lee CT, Lin KP et al (2008) Debris-budget-based debris-flow susceptibility analysis. In: Liu H, Deng A, Chu J (eds) Geotechnical engineering for disaster mitigation and rehabilitation. Springer, Berlin, Heidelberg, pp 145–152

    Chapter  Google Scholar 

  • Gao L, Zhang ML, Chen HX et al (2016) Simulating debris flow mobility in urban settings. Eng Geol 214:67–68. doi:10.1016/j.enggeo.2016.10.001

    Article  Google Scholar 

  • Hollingdworth R, Kvacs GS (1981) Soil slumps and debris flow: a prediction and protection. Bull Assoc Eng Geol 38(1):17–28. doi:10.2113/gseegeosci.xviii.1.17

    Google Scholar 

  • Hu KH, Wei FQ, He YP et al (2003) Application of particle model in risk zoning of debris flows. J Mt Sci 21(6):726–730 (in Chinese)

    Google Scholar 

  • Hu KH, Cui P, Wang CC et al (2010) Characteristic rainfall for warning of debris flows. J Mt Sci 7(3):207–214. doi:10.1007/s11629-010-2022-2

    Article  Google Scholar 

  • Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. The role of debris flow conditions in predicting debris flow activity. Can Geotech J 21(4):663–677. doi:10.1139/t84-073

    Article  Google Scholar 

  • Jibson RW (1989) Debris flows in southern Puerto Rico. Geol Soc Am Spec Pap 236:29–56. doi:10.1130/SPE236-p29

    Google Scholar 

  • Jinsoo K, Chuluong C, Soyoung P (2013) GIS-based landslide susceptibility analyses and cross-validation using a probabilistic model on two test areas in Korea. Disaster Adv 6(10):45–54

    Google Scholar 

  • Johnson AM, Rahn PH (1970) Mobilization of debris flows. Zeitschrift fur Geomorphologie 9:168–186

    Google Scholar 

  • Laigle D, Marchi L (2000) Example of mud/debris-flow hazard assessment, using numerical models. Debris-flow hazard mitigation: mechanics, prediction, and assessment. Proceedings of international conference, Taipei, pp 417–424

  • Liang WJ, Zhuang DF, Jiang D et al (2012) Assessment of debris flow hazards using a Bayesian network. Geomorphology 171(9):94–100. doi:10.1016/j.geomorph.2012.05.008

    Article  Google Scholar 

  • Liu XL (1988) Study on debris flow dangerous degree judgment. J Catastrophol 3:10–15 (in Chinese)

    Google Scholar 

  • Liu KF, Huang MC (2006) Numerical simulation of debris flow with application on hazard area mapping. Comput Geosci 10(2):221–240. doi:10.1007/s10596-005-9020-4

    Article  Google Scholar 

  • Liu Y, Guo HC, Zou R et al (2006) Neural network modeling for regional hazard assessment of debris flow in Lake Qionghai Watershed. China Environ Geol 49(7):968–976. doi:10.1007/s00254-005-0135-7

    Article  Google Scholar 

  • Liu KF, Li HC, Hsu YC (2009) Debris flow hazard assessment with numerical simulation. Nat Hazards 49(1):137–161. doi:10.1007/s11069-008-9285-8

    Article  Google Scholar 

  • Liu JF, You Y, Chen XZ et al (2010) Identification of potential sites of debris flows in the upper Min River drainage, following environmental changes caused by the Wenchuan earthquake. J Mt Sci 3:255–263. doi:10.1007/s11629-010-2017-z

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(03):331–343

    Article  Google Scholar 

  • Oliver L (1998) Example of hazard assessment and land-use planning in Switzerland for snow avalanches, floods and landslide. Swiss National Hydrological and Geological Survey, Burn

    Google Scholar 

  • Peng SH, Lu SC (2013) FLO-2D simulation of mudflow caused by large landslide due to extremely heavy rainfall in South eastern Taiwan during Typhoon Morakot. J Mt Sci 10(2):207–218. doi:10.1007/s11629-013-2510-2

    Article  Google Scholar 

  • Revellino P, Hungr O, Guadagno FM et al (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45(3):295–311. doi:10.1007/s00254-003-0885-z

    Article  Google Scholar 

  • Romenski E, Toro EF (2004) Compressible two-phase flows: two-pressure models and numerical methods. J Sci Comput 13(3):403–416. doi:10.1007/s10915-009-9316-y

    Google Scholar 

  • Rupert MG, Cannon SH, Gartner JE et al (2008) Using logistic regression to predict the probability of debris flows in areas burned by wildfires, southern California, 2003–2006. US geological survey open-file report 2008–1370

  • Sichuan Water and Power Department (1984) Sichuan Hydrology Record Handbook

  • Sousa J, Voight B (1995) Multiple-pulsed debris avalanche emplacement at Mount St. Helens in 1980: evidence from numerical continuum flow simulations. J Volcanol Geoth Res 66:227–250. doi:10.1016/0377-0273(94)00067-Q

    Article  Google Scholar 

  • Staffler H, Berger E, Zischg A (2006) Localization and assessment of potential damages in settlements and infrastructures caused by floods and debris flow as a decision basis for the prioritization of mitigation measures. Geophys Res Abstr 8:03308

    Google Scholar 

  • Takahashi T (1980) Debris flow on prismatic open channel. J Hydraul Div ASCE 106(HY3):381–396

    Google Scholar 

  • Tang C (1994) Numerical simulation of debris flow inundation on the alluvial fans and its prediction model the risk areas. J Soil Water Conserv 8(1):45–50 (in Chinese)

    Google Scholar 

  • Tang C, Zhu J, Li WL (2009) Rainfall-triggered debris flows following the Wenchuan earthquake. Bull Eng Geol Environ 68(2):187–194. doi:10.1007/s10064-009-0201-6

    Article  Google Scholar 

  • Tang C, Van Asch TWJ, Chang M et al (2012) Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 139–140:559–576. doi:10.1016/j.geomorph.2011.12.021

    Article  Google Scholar 

  • Tie YB, Tang C (2006) Application of AHP in single debris flow risk assessment. Chin J Geol Susceptibility Control 17(4):79–84 (in Chinese)

    Google Scholar 

  • Wang J (2015) Research on the debris flow buried risk based on dynamic process. Dissertation, University of Chinese Academy of Science

  • Wang EC, Meng QR (2009) Mesozoic and cenozoic tectonic evolution of the Longmenshan fault belt. Sci China Ser D 52(5):579–592. doi:10.1007/s11430-009-0053-8

    Article  Google Scholar 

  • Wang J, Ou GQ, Yang S (2013) Applicability of geomorphic information entropy in the post-earthuake debris flow risk assessment. J Mt Sci 31(1):83–91 (in Chinese)

    Google Scholar 

  • Wang J, Yu Y, Yang S et al (2014) A modified certainty coefficient method (M-CF) for debris flow susceptibility assessment: a case study for the Wenchuan earthquake meizoseismal areas. J Mt Sci 11(5):1286–1297. doi:10.1007/s11629-013-2781-7

    Article  Google Scholar 

  • Wang J, Yu Y, Pan HL et al (2015) Debris flow formation process and critical hydrodynamic conditions in the meizoseismal area of the Wechchuan earthquake. J Mt Sci 12(3):699–710. doi:10.1007/s11629-014-3370-0

    Article  Google Scholar 

  • Wei FQ, Hu KH, Lopez JL et al (2003) Method and its application of the momentum model for debris flow risk zoning. Chin Sci 48(3):298–301 (in Chinese)

    Google Scholar 

  • Xiong JN, Sun M, Liu S (2015) The debris flow hazard assessment of Wenchuan earthquake-stricken area based on watershed unit. Electron J Geotech Eng 20(14):6025–6034

    Google Scholar 

  • Xu Q, Zhang S, Li WL et al (2012a) The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China. Nat Hazards Earth Syst Sci 12(1):201–216. doi:10.5194/nhess-12-201-2012

    Article  Google Scholar 

  • Xu WB, Yu WJ, Zhang GP (2012b) Prediction method of debris flow by logistic model with two types of rainfall: a case study in the Sichuan, China. Nat Hazards 62(2):733–744. doi:10.1007/s11069-011-9988-0

    Article  Google Scholar 

  • Xu WB, Jing SK, Yu WJ et al (2013) A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China. Geomorphology 201(3):45–51. doi:10.1016/j.geomorph.2013.06.003

    Article  Google Scholar 

  • Yao YZ, Li RF, Wen SQ et al (2010) Probability assessment of mountainous hazards in Lingyuan city, Liaoning Province. Acta Geosci Sin 31(1):109–116 (in Chinese)

    Google Scholar 

  • Zhang JC, Li CC, Zhang M et al (2011) Geomorphologic analysis of the Golmud River drainage basin based on hypsometric integral value. J Mt Sci 29(3):257–263 (In Chinese)

    Google Scholar 

  • Zhang W, Chen JP, Wang Q et al (2013) Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods. Nat Hazards 66(2):1073–1100. doi:10.1007/s11069-012-0539-0

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by Guangzhou Water Resources Science and Technology Innovation Project (2016–15); Innovative Talents Introduction Project of Guangdong Academy of Science (2017GDASCX-0803); National Natural Science Foundation of China (41372331; 41301301; 41502330); Research Platform and Environment Capacity Building Project of Guangdong Academy of Science (2016GDAsPTO301); and Guangdong Provincial Science and Technology Plan Projects (2013B060500072; 2014A020219006; 2013B020314003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, S., Ou, G. et al. Debris flow hazard assessment by combining numerical simulation and land utilization. Bull Eng Geol Environ 77, 13–27 (2018). https://doi.org/10.1007/s10064-017-1006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1006-7

Keywords

Navigation