Skip to main content
Log in

Caractérisation minéralogique et géotechnique des argiles marneuses gonflantes de la région de Médéa, Algérie

Mineralogical and geotechnical characterization of swelling marly clays of the Medea region of Algeria

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Résumé

Cet article porte sur la caractérisation géologique, minéralogique et géotechnique des argiles marneuses gonflantes de la région de Médéa. Dans une première étape les contextes géologique, tectonique, climatologique et hydrologique de la région sont décrits. Dans une seconde étape, les résultats des essais d’identification géotechnique, de la diffraction RX, des analyses chimiques et des observations au MEB sont présentés et discutés. La microstructure est représentée par une matrice argileuse compacte relativement homogène, active et très plastique, avec présence de minéraux argileux gonflants. Dans une troisième étape, le gonflement de cette formation est analysé à l’aide des méthodes de classification basées sur les paramètres d’identification physique et les essais de gonflement. Le caractère gonflant de cette formation apparaît clairement à travers l’ensemble des classifications et les résultats d’essais de gonflement. La prise en compte du phénomène de gonflement est donc essentielle dans le dimensionnement des ouvrages.

Abstract

This paper presents the approach followed for the geological, mineralogical, and geotechnical characterization of swelling marly clays in the Médéa region. This investigation is conducted in order to estimate the swelling potential of this marly clay layer. The studied sites, located at about 80 km south of Algiers, Algeria, cover an area of approximatively 400 hectares. Five sites are considered. In the first step, the geological, tectonic, climatic, and hydrological contexts of the region are described. According to the geological map of Médéa, most of the formations encountered in the area are composed of Miocene layers represented by marly clays (Fig. 2). This region is characterized by its high and low temperature in summer and winter, respectively, and variable humidity (Fig. 3). In a second step, the results of geotechnical studies, X-ray diffraction tests, chemical analyses, and scanning electron microscope (SEM) observations are presented (Figs. 3, 4, 5, 6, 7, 8, 9). The soils contain quartz (20–26 %), calcium carbonates (11–55 %), kaolinite (8–13 %), illite (6–14 %) and Montmorillonite (18–26 %). The study of their microstructure by means of SEM indicates that these soils are formed by a compact marly clay matrix that is relatively homogeneous and oriented in the dip direction of bedding. A grain size analysis shows that the clay content varies between 17 and 70 %. The water content of all samples varies between 8 and 30 %. The values of the liquidity limit (LL) and plasticity index (PI) vary between 28–76 % and 16–36 % respectively, indicating a highly plastic soil; this is also confirmed by a specific surface varying between 99 and 179 m2/g. The dry density γ d varies between 15 and 19 kN/m3. The swelling potential of the marly clay samples is evaluated firstly using various indirect methods. In literature, a number of empirical classifications are proposed by different authors (BRE 1980; Chen 1988; Komornik and David 1969; Seed et al. 1962; Snethen 1984; Vijayvergiya et Ghazzaly 1973 et Williams and Donaldson 1980). The swelling potential is related to certain physical properties of soils, such as consistency limits, clay content, methylene blue value, etc. In general, these methods indicate that all the tested soils have a high swelling potential, which confirms the results of mineralogical analysis. Secondly, direct measurements of swelling parameters are performed. Swelling tests are carried out using a standard slaved one-dimensional odometer using two methods: free swell and constant volume, according to standard ASTM D 4546-90 and AFNOR (1995). The swell pressure, the swell percentage and the swell index are given in Fig. 16. It is noted that the soils develop very significant swell pressures which vary between 25 and 900 kPa. This is in agreement with the results obtained by empirical methods. This investigation clearly shows that the marly clays of the Médéa region have a high swelling potential. Therefore, taking into account the phenomenon of soil swelling in structure design is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Références

  • Abduljauwad SN, Al-Sulaimani G (1993) Determination of swell potential of Al-Qatif clay. Geot Test J 16:469–484

    Article  Google Scholar 

  • AFNOR (1995) Essai de gonflement à l’oedomètre. Détermination des déformations par chargement de plusieurs éprouvettes. Normalisation Française, XP P 94–091, p 13

  • Alonso EE, Gens A, Hight DW (1987) General report. Special problem soils. In: Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering, Dublin, vol 3, pp 1087–1146

  • Ameur B (1989) Sols gonflants: étude de cas. Compte rendus de Symp Int de Mécanique des Sols, Laboratoire des Travaux Publics de l’Ouest (LTPO), Tiaret, Algerie, tome 1

  • ASTM (1986) Standard test methods for one-dimensional swell or settlement potential of cohesive soils, ASTM D 4546–85

  • Bahar R, Kenai S (2002) Désordres dus à l’infiltration des eaux: cas de la ville d’El-Affroun. Rev Fr de Géot 101:91–103

    Google Scholar 

  • Bahar R, Kenai S (2008) Etude de quelques problèmes de fondations et d’ouvrages de soutènement dans les sols argileux. Actes du Symp Int Sécheresse et Constructions. Paris 2003:413–418

    Google Scholar 

  • Brackley IJA (1975) Swell pressure and free swell in compacted clay. In: Proceedings of the 3rd international conference on expansive soils, Haifa, pp 196–176

  • BRE, Building Research Establishment (1980) Low-rise buildings on shrinkable clay soils: Part 1. BRE Digest 240, HMSO, London

  • Chen FH (1988) Foundations on expansive soils. Dev on Geot Eng, vol 54. Elsevier Publishing Co, Amsterdam, p 464

  • Dakshanamurthy V, Raman V (1973) A simple method of identifying an expansive soil. Soils Found 13(1):97–104

    Article  Google Scholar 

  • Derriche Z, Iguechtal L, Tas M (1999) Comportement des ouvrages dans les argiles expansives d’In-Amenas. Rev Franç de Géot 89:55–65

    Google Scholar 

  • Djedid A, Bekkouche A (2001) Identification and prediction of the swelling behaviour of some soils from the Tlemcen region of Algeria. Bull LPC 4375(233):69–77

    Google Scholar 

  • Erol O, Dhowiah, Youssef (1986) Assessment of oedometer methods heave prediction. In: Proceedings of the 6th International Conference on Expansive Soils. New Delhi, pp 99–103

  • Gilchirst HG (1963) A study of volume change of a highly plastic clay. Thèse de doctorat, Université de Saskatchewan, Saskatoon, Canada, p 215

  • Guiras-Skandaji H (1996) Déformabilité des sols argileux non saturés: étude expérimentale et application à la modélisation, Thèse de doctorat, Institut National Polytechnique de Lorraine, École Nationale Supérieure de Géologie, Nancy, France, p 315

  • Hachichi A, Fleureau JM (1999) Caractérisation et stabilisation de quelques sols gonflants d’Algérie. Rev Fr Géotech 86:37–51

    Google Scholar 

  • Holtz WG, Gibbs HJ (1956) Engineering properties of expansive soils. ASCE 121:641–677

    Google Scholar 

  • Jennings JEB, Knight K (1957) The prediction of total heave from double oedometre test. In: Symposium on Expansive clays. South African Institute of Civil Engineers, Johannesburg, vol 9, pp 13–19

  • Justo JL, Delgado A, Ruiz J (1984) The influence of stress-path in collapse-swelling of soils at the laboratory. In: Proceedings of the 5th International Conference on Expansive Soils, Adelaide-South Australia, vol 1, pp 67–71

  • Khaddaj S (1992) Etude en laboratoire du gonflement de l’argile des Flandres, Thèse de doctorat, Université des Sciences et Technologies de Lille, France

  • Komornik A, David D (1969) Prediction of swelling pressure of clays. In: Proceeding ASCE, J Soil Mech Found Div 95 (SM1):209–225

  • Lambe TW, Whitman RV (1959) The role of effective stress in the behavior of expansive soils. Q Colo School Mines 54(4):33–66

    Google Scholar 

  • Magnan D (1993) Caractérisation in situ des sols gonflants: l’essai Expansol. Thèse de doctorat, Université J. Fourier, Grenoble, p 190

  • Mariotti M (1976) Le gonflement des sols argileux surconsolidés (aspect du phenomène-influence sur les structures-prédictions à envisager). Mines et géologie, Rabat, n° 39:13–28

    Google Scholar 

  • Mitchell JK (1976) Fundamentals of soil behavior. Wiley, New York, NY, p 422

    Google Scholar 

  • Mouroux P, Margron P, Pinte JC (1988) La construction économique sur sols gonflants. Edit. BRGM, Manuels et Méthodes n° 14

  • Mrad M (2005) Modélisation du comportement hydromécanique des sols gonflants non saturés. Thèse doctorat, Institut National Polytechnique de Lorraine, Nancy, France, p 342

  • Nowamooz H (2007) Retrait/Gonflement des sols argileux naturels et compactés, Thèse de doctorat, Institut National Polytechnique de Lorraine, Nancy, France, p 197

  • Ofer Z, Blight G (1985) Measurement of swelling pressure in the laboratory and in situ. Transp Res Rec n° 1032, pp 15–22

    Google Scholar 

  • Philiponat G (1991) Retrait des argiles, proposition de méthodologie. Rev Fr de Géot 57:5–22

    Google Scholar 

  • Seed HB, Woodward RJ, de Lundgren R (1962) Prediction of swelling potentiel for compacted clays. J Soil Mech Found Div ASCE 88:107–131

    Google Scholar 

  • Serratrice JF, Soyez B (1996) Les essais de gonflement. Bull labo P et C 204:65–85

    Google Scholar 

  • Snethen D.R. (1984) Evaluation of expedient methods for identification and classification of potentially expansive soils. In: Proceedings of the 5th international conference on expansive soils, Adelaide, South Australia, pp 22–26

  • Sridharan A, Rao AS, Sivapullaiah V (1986) Swelling pressure of clays. Geot Test J 9(1):24–33

    Article  Google Scholar 

  • Tran Ngoc Lan (1977) Nouvel essai d’identification des sols : l’essai au bleu de méthylène. Bull L P C 88:136–137

    Google Scholar 

  • Vijayvergiya VN et Ghazzaly OI (1973) Prediction of swelling potential for natural clays. In: Proceedings of the 3rd international conference expansive soils, Haifa, pp 227–236

  • Williams AB, Donaldson GW (1980) Developments related to building on expansive soils in South Africa. In: Proceedings of the 4th international conference on expansive soils, Denver 2:834–844

  • Yenes M, Nespereira J, Blanco JA, Suàrez M, Monterrubio S, Iglesias C (2010) Shallow foundations on expansive soils: a case study of the El viso geotechnical unit, Salamanca, Spain. Bull Eng Geol Environ. doi:10.1007/s10064-010-0337-4

  • Yukselen Y, Kaya A (2008) Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng Geol 102:38–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Medjnoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medjnoun, A., Khiatine, M. & Bahar, R. Caractérisation minéralogique et géotechnique des argiles marneuses gonflantes de la région de Médéa, Algérie. Bull Eng Geol Environ 73, 1259–1272 (2014). https://doi.org/10.1007/s10064-014-0582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-014-0582-z

Mots clés

Keywords

Navigation