Skip to main content
Log in

A review of the stabilization of tropical lowland peats

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The Deep Mixing Method, which involves the formation of in situ stabilized peat columns, is suitable for deep peat stabilization, whereas the mass stabilization technique is used to stabilize the soil of shallow peat deposits instead of the costly and problematic removal and replacement method. The concept of soil-cement stabilization involves the addition of water to cement, resulting in a chemical process known as cement hydration. Stabilization of peat by cement, which requires a significant strength increase in the cement-stabilized peat or organic soil, is attributed largely to physicochemical reactions that include cement hydration, hardening of the resulting cement paste and interactions between soil substances and primary and secondary cementation hydration products. The factors that affect these physicochemical reactions and the interactions of peat soil-cementation products that influence peat stabilization are the amount of solid particles, the water: soil ratio, the quantity of binder, the presence of humic and/or fulvic acids, the soil pH and the amount of organic matter in the peat. With the Air Curing Technique, stabilized peat samples for unconfined compressive strength (UCS) tests were kept at a normal air temperature of 30 ± 2 °C and strengthened by gradual moisture content reduction instead of the usual water-curing technique or water submersion methods that have been common practice in past experiments involving the stabilization of peat with cement. The principle of using the Air Curing Technique to strengthen stabilized peat is that peat soil at its natural moisture content contains sufficient water (water content from 198 to 417 %) that, when mixed with cement, a curing process takes place that causes the stabilized peat soil to gradually lose its moisture content and to become drier and harder throughout the curing period. This process does not require the addition of water.

Résumé

Méthode de mixage profond (DMM), ce qui implique la formation de colonnes in-situ stabilisées tourbe, est approprié pour la stabilisation de la tourbe profonde, alors que la technique de stabilisation de masse est utilisé pour stabiliser le sol de dépôts de tourbe peu profonds au lieu de l' enlèvement et le remplacement coûteux et problématique Procédé. La notion de stabilisation sol-ciment implique l'addition d'eau à du ciment, ce qui entraîne un processus chimique connu sous l'hydratation du ciment. La stabilisation de la tourbe par du ciment, ce qui nécessite une augmentation de la résistance significative de la tourbe stabilisée au ciment ou du sol organique, est attribuée en grande partie à des réactions physico-chimiques qui comprennent l'hydratation du ciment, le durcissement de la pâte de ciment obtenue et les interactions entre les substances du sol et de l'hydratation de la cimentation primaire et secondaire produits. Les facteurs qui influent sur ces réactions physico-chimiques et les interactions des produits de tourbe du sol cimentation qui influencent la tourbe stabilisation sont la quantité de particules solides, le rapport eau du sol, la quantité de liant, la présence d'acides humiques et / ou des acides fulviques, le sol le pH et la quantité de matière organique dans la tourbe. Avec l' Air Durcissement Technique, stabilisé échantillons de tourbe pour les tests UCS ont été maintenus à une température de l'air normal de 30 ± 2 º C et renforcé par la réduction progressive de la teneur en humidité au lieu de la technique de watercuring habituel ou méthodes submersion d'eau qui ont été de pratique courante dans les expériences antérieures concernant la stabilisation de la tourbe avec du ciment. Le principe de l'utilisation de la technique de durcissement à l'air à renforcer stabilisé tourbe est que la tourbe sol à sa teneur naturelle en eau contient suffisamment d'eau (teneur en eau de 198 % à 417 % ) qui, lorsqu'il est mélangé avec le ciment, un procédé de durcissement a lieu qui provoque l' stabilisée tourbe sol à perdre progressivement son taux d'humidité et de devenir plus sèche et plus dure pendant toute la période de durcissement. Ce procédé ne nécessite pas l'addition d'eau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahnberg H, Johansson SE, Retelius A, Ljungkrantz C, Holmqvist L, Holm G (1995) Cement and lime for deep stabilization of soil (In Swedish). 48th Report of Swedish Geotechnical Institute

  • Alwi A (2008) Ground improvement of Malaysian peat soils using stabilized peat-column techniques. Ph.D thesis, University of Malaya, Kuala Lumpur (Malaysia) 260

  • Axelsson K, Johansson SE, Andersson R (2002) Stabilization of organic soils by cement and puzzolanic reactions. Feasibility study. Linkoping (Sweden): 3rd report of Swedish deep stabilization research centre. English translation 51

  • Bergado DT, Anderson LR, Miura N, Balasubramaniam AS (1996) Soft ground improvement in lowlands and other environments, 1st edn. ASCE Press, New York

    Google Scholar 

  • Chen H, Wang Q (2006) The behaviour of organic matter in the process of soft soil stabilization using cement. Eng Geol Environ Bull 65(4):445–448

    Article  Google Scholar 

  • Deboucha S, Hashim R, Alwi A (2008) Engineering properties of stabilised tropical peat soils. Electron J Geotech Eng 13(D):1–9

    Google Scholar 

  • D.I.D (2001) Water management guidelines for agricultural development in lowland peat swamps of Sarawak—manual. Drainage and Irrigation Department of Sarawak, Malaysia

    Google Scholar 

  • Duraisamy Y, Huat BBK, Aziz AA (2007) Compressibility behaviour of tropical peat reinforced with cement columns. Am J Appl Sci 4(10):786–791

    Article  Google Scholar 

  • Edil TB (2003) Recent advances in geotechnical characterization and construction over peats and organic soils. In: Proceedings of the 2nd International Conference in Soft Soil Engineering and Technology, Putrajaya, Malaysia

  • Elbadri HA (1998) The effect of pozzolans in the stabilization of sulphide tailings. Master thesis. McGill University, Montreal (Canada)

    Google Scholar 

  • EuroSoilStab (2002) Development of design and construction methods to stabilize soft organic soils: design guide soft soil stabilization. CT97-0351. Project no. BE 96-3177, industrial and materials technologies programme (Brite- EuRam III), European Commission

  • Fagerlund G (1994) Struktur och strukturutveckling. Kap. 10 i Betonghandbok. Material, Svensk Byggtjänst och Cementa AB, Stockholm

  • Hashim R, Islam MS (2008) Bearing capacity of stabilised tropical peat by deep mixing method. Aust J Basic Appl Sci 3(2):682–688

    Google Scholar 

  • Hebib S, Farrel ER (2003) Some experiences on the stabilization of Irish peats. Can Geotech J 40:107–120

    Article  Google Scholar 

  • Huat BBK (2004) Organic and peat soils engineering. Universiti Putra Malaysia Press, Serdang, Malaysia 146

    Google Scholar 

  • Huttunen E, Kujala K (1996) On the stabilization of organic soils. In: Proceedings of the 2nd International Conference on Ground Improvement Geosystems, IS-Tokyo 96, Tokyo, Japan, vol 1, pp 411–414

  • Ismail MA, Joer HA, Randolph MF, Meritt A (2002) Cementation of porous materials using calcite. Geotechnique 52(5):313–324

    Article  Google Scholar 

  • Jacobson J, Filz GM (2002) Factors affecting strength gain in lime-cement columns and development of a laboratory testing procedure. Master of Science thesis. Virginia Polytechnic Institute and State University, Blacksburg 83

    Google Scholar 

  • Janz M, Johansson SE (2002) The function of different binding agents in deep stabilization. Linkoping (Sweden): 9th Report of Swedish Deep Stabilization Research Centre

  • Kalantari B, Huat BBK (2008) Peat soil stabilization, using ordinary portland cement, polypropylene fibers, and air curing technique. Electron J Geotech Eng 13:1–13

    Google Scholar 

  • Kazemian S, Huat BBK, Prasad A, Barghchi M (2011) A state of art review of peat: geotechnical engineering perspective. Int J Phys Sci 6(8):1974–1981

    Google Scholar 

  • Kezdi A (1979) Stabilized earth roads, 1st edn. Akademiai Kiado, Budapest

    Google Scholar 

  • Larsson S (2003) Mixing processes for ground improvement by deep mixing. Linkoping (Sweden): 3rd Report of Swedish Deep Stabilization Research Centre

  • Muttalib A, Lim JS, Wong MH, Koonvai L (1991) Characterization, distribution, and utilization of peat in Malaysia. In: Proceedings of the International Symposium on Tropical Peatland, ed. Aminuddid, Kuching, Sarawak, 7–16

  • Paramananthan S (1998) Malaysian soil taxonomy-second approximation. A proposal for the classification of Malaysian soils. Published jointly by Malaysian Society for Soil Science and Param Agricultural Soil Surveys (M) Sdn. Bhd. October 1998, Serdang, Malaysia

  • Paramananthan S (2010) Keys to the identification of Malaysian soils according to parent materials (Mimeo). Param Agricultural Soil Surveys (M) Sdn. Bhd., Petaling Jaya, Selangor, Malaysia

  • Tremblay H, Duchesne J, Locat J, Leroueil S (2002) Influence of the nature of organic compounds on fine soil stabilization with cement. Can Geotech J 39(3):535–546

    Article  Google Scholar 

  • Wong LS (2010) Stabilization of peat by by chemical binders and siliceous sand. PhD thesis. University of Malaya, Kuala Lumpur (Malaysia). p 260

  • Wong LS, Hashim R, Ali F (2009) Unconfined compressive strength of cemented peat. Aust J Basic Appl Sci 3(4):3850–3856

    Google Scholar 

  • Wong LS, Hashim R, Ali F (2011) Unconfined compressive strength characteristics of stabilized peat. Sci Res Essays 6(9):1915–1921

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers who contributed constructive comments that enabled us to improve this manuscript considerably. The authors also acknowledge the IPPP grant RG257-13AFR for financial support from the University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aqeel Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zulkifley, M.T.M., Ng, T.F., Raj, J.K. et al. A review of the stabilization of tropical lowland peats. Bull Eng Geol Environ 73, 733–746 (2014). https://doi.org/10.1007/s10064-013-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0549-5

Keywords

Mots clés

Navigation