Skip to main content
Log in

Physio-Chemical Properties, Consolidation, and Stabilization of Tropical Peat Soil Using Traditional Soil Additives — A State of the Art Literature Review

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

A Geotechnical Engineering to this article was published on 01 July 2022

Abstract

Peat is formed by the degradation of plants and animals in the lack of oxygen and is widely known for its very weak geotechnical characteristics. This is the reason to be considered as an unsuitable foundation soil for construction activities. Several attempts have been made to characterize and stabilize peat soil to make construction viable. This study encapsulates an extensive literature review of the available published data for Atterberg limits, consolidation, and stabilization of peat soil using traditional additives, especially cement and lime. Moreover, peat formation and distribution around the world are also discussed. The analysis of the gathered data shows that peat soils having a high amount of fibers may suffer a large amount of secondary consolidation when the load is applied. Besides, the compressibility factors vary for Malaysian peat due to different water and organic contents. The improvement of peat soil is challenging and expensive, requiring an extra amount of stabilizer for the initiation of the stabilization process. However, the optimum and threshold stabilizer’s dosage for peat is also a challenging task to predict due to several factors affecting the stabilization process. Lastly, the study concludes with recommendations on the implication of the fall cone and thread rolling tests for the determination of Atterberg limits of fibrous peat, effective consolidometer for peat, and utilization of traditional additives for peat soil stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AASHTO T89-13 (2017) Determining the liquid limit of soils. American Association of State Highway and Transportation Officials (AASHTO)

  • Abdel-salam AE (2017) Stabilization of peat soil using locally admixture. HBRC Journal 14(3):294–299, DOI: https://doi.org/10.1016/j.hbrcj.2016.11.004

    Article  Google Scholar 

  • Afrin H (2017) A review on different types soil stabilization techniques. International Journal of Transportation Engineering and Technology 3(2):19–24, DOI: https://doi.org/10.11648/j.ijtet.20170302.12

    Article  Google Scholar 

  • Al-Amoudi OSB, Al-Homidy AA, Maslehuddin M, Saleh TA (2017) Method and mechanisms of soil stabilization using electric arc furnace dust. Scientific Reports 7(46676):1–10, DOI: https://doi.org/10.1038/srep46676

    Google Scholar 

  • Al-Bared MAM, Harahap ISH, Marto A (2018a) Sustainable strength improvement of soft clay stabilized with two sizes of recycled additive. International Journal of GEOMATE 15(51):39–46, DOI: https://doi.org/10.21660/2018.51.06065

    Article  Google Scholar 

  • Al-Bared MAM, Harahap ISH, Marto A, Mohamad H, Alavi Nezhad Khalil Abad SV, Mustaffa Z (2020) Cyclic behavior of RT-cement treated marine clay subjected to low and high loading frequencies. Geomechanics and Engineering 21(5):433–445, DOI: https://doi.org/10.12989/gae.2020.21.5.433

    Google Scholar 

  • Al-Bared MAM, Harahap ISH, Marto A, Alavi Nezhad Khalil Abad SV, Mustaffa Z, Ali MOA (2019a) Mechanical behaviour of waste powdered tilesand Portland cement treated soft clay. Geomechanics and Engineering 19(1):37–47, DOI: https://doi.org/10.12989/gae.2019.19.1.037

    Google Scholar 

  • Al-Bared MAM, Marto A (2017a) A review on the geotechnical and engineering characteristics of marine clay and the modern methods of improvements. Malaysian Journal of Fundamental and Applied Sciences 13(4):825–831, DOI: https://doi.org/10.11113/mjfas.v13n4.921

    Article  Google Scholar 

  • Al-Bared MAM, Marto A (2017b) Review on the geotechnical and engineering properties of marine clay and the suitable common stabilization methods. The 2nd International Conference on Separation Technology (ICoST 2017) 13(4):825–831, DOI: https://doi.org/10.11113/mjfas.v13n4.921

    Google Scholar 

  • Al-Bared MAM, Marto A (2019) Evaluating the compaction behaviour of soft marine clay stabilized with two sizes of recycled crushed tiles. In: Pradhan B (ed) GCEC 2017. Lecture notes in civil engineering, vol 9. Springer, Singapore, 1273–1284, DOI: https://doi.org/10.1007/978-981-10-8016-6_90

    Chapter  Google Scholar 

  • Al-Bared MAM, Marto A, Harahap ISH (2019b) Eco-friendly sustainable stabilization of dredged soft clay using low-carbone recycled additives. In: Aziz MA, Kassim KA, Bakar WAWA, Marto A, Muhammad SASF (eds) Fossil free fuels. CRC Press, Boca Raton, FL, USA, 71–84, DOI: https://doi.org/10.1201/9780429327773-5

    Chapter  Google Scholar 

  • Al-Bared MAM, Marto A, Harahap ISH, Kasim F (2018b) Compaction and plasticity comparative behaviour of soft clay treated with coarse and fine sizes of ceramic tiles. E3S Web of Conferences 34:1–9, DOI: https://doi.org/10.1051/e3sconf/20183401012

    Article  Google Scholar 

  • Al-Bared MAM, Marto A, Latifi N (2018c) Utilization of recycled tiles and tyres in stabilization of soils and production of construction materials — A state-of-the-art review. KSCE Journal of Civil Engineering 22(10):3860–3874, DOI: https://doi.org/10.1007/s12205-018-1532-2

    Article  Google Scholar 

  • Alhani IJ, Noor MJ, Bin M, Al-Bared MAM, Harahap ISH, Albadri WM (2020) Mechanical response of saturated and unsaturated gravels of different sizes in drained triaxial testing. Acta Geotechnica 4, DOI: https://doi.org/10.1007/s11440-020-00954-4

  • Aminur MR Kolay PK, Taib SNL (2009) Effect of admixtures on the stabilization of peat soil from sarawak. Indian geotechnical conference (IGC-2009), December 17–19, Guntur, India, 410–414

  • Amuda AG, Hasan A, Unoi DND, Linda SN (2019a) Strength and compressibility characteristics of amorphous tropical peat. Journal of GeoEngineering 14(2):85–96, DOI: https://doi.org/10.6310/jog.201906_14(2).4

    Google Scholar 

  • Amuda AG, Sahdi F, Hasan A, Taib SNL, Boylan N, Mohamad A (2019b) Measurement of amorphous peat shear strength in the direct shear box at high displacement rates. Geotechnical and Geological Engineering 37(2):1059–1072, DOI: https://doi.org/10.1007/s10706-018-0643-3

    Article  Google Scholar 

  • Anjaneyappa, Amarnath M (2011) Studies on soils treated with non traditional stabilizer for pavements. Indian Geotechnical Journal 41(3):162–167

    Google Scholar 

  • Asadi A, Huat BBK, Hanafi MM, Mohamed TA, Shariatmadari N (2011) Chemico-geomechanical sensitivities of tropical peat to pore fluid pH related to controlling electrokinetic environment. Journal of the Chinese Institute of Engineers 34(4):481–487, DOI: https://doi.org/10.1080/02533839.2011.576491

    Article  Google Scholar 

  • ASTM_D4318-10 (2010) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM_D4318-10, ASTM International, West Conshohocken, PA, USA, DOI: https://doi.org/10.1520/D4318-10

    Google Scholar 

  • Ata A, Mashhour M, Aly A (2007) The use of rowe cell test results in predicting collapse settlement of soils. Proceedings of the 3rd Asian Conference on Unsaturated Soils, Science Press, Beijing, China, 169–172

    Google Scholar 

  • Atterberg A (1911a) Die plastizität der tone. Internationale Mitteilungen Der Bodenkunde 1:4–37 (in German)

    Google Scholar 

  • Atterberg A (1911b) Lerornas forhållande till vatten, deras plasticitetsgränser och plasticitetsgrader. Kungliga Lantbruksakademiens Handlingar Och Tidskrift 50(2):132–158 (in Swedish)

    Google Scholar 

  • Axelsson K, Johansson S, Andersson R (2002) 3rd Report: Stabilization of organic soils by cement and puzzolanic reactions — Feasibility study. Swedish Deep Stabilization Research Centre, Linköping, Sweden

    Google Scholar 

  • Badogiannis E, Tsivilis S (2009) Exploitation of poor greek kaolins: Durability of metakaolin concrete. Cement and Concrete Composites 31(2):128–133, DOI: https://doi.org/10.1016/j.cemconcomp.2008.11.001

    Article  Google Scholar 

  • Bergado DT (1994) Improvement techniques of soft ground in subsiding and lowland environment. Balkema, Rotterdam, The Netherlands

    Google Scholar 

  • Berry PL, Poskitt TJ (1972) The consolidation of peat. Geotechnique 22(1):27–52, DOI: https://doi.org/10.1680/geot.1972.22.1.27

    Article  Google Scholar 

  • Borthakur N, Singh MS (2014) Stabilization of peat soil using locally admixture. International Journal of Advances in Computer Science & Its Applications — IJCSIA 4(4):227–231

    Google Scholar 

  • Broms BB (1989) Stabilization of soft clay with lime and cement columns in southeast. International Conference on Engineering Problems of Regional Soils 27(2), DOI: https://doi.org/10.1016/0148-9062(90)95192-4

  • BS 1377–2 (1990) Methods of test for soils for civil engineering purposes — Part 2: Classification tests

  • Cai G, Liu S (2017) Compaction and mechanical characteristics and stabilization mechanism of carbonated reactive MgO-stabilized silt. KSCE Journal of Civil Engineering 21(11):2641–2654, DOI: https://doi.org/10.1007/s12205-017-1145-1

    Article  Google Scholar 

  • Cameron CC (1983) Geology of peat as it affects the exploitation of the economic commodity. International Symposium on Peat Utilization 41–42

  • Cameron CC, Esterle JS, Palmer CA (1989) The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes. International Journal of Coal Geology 12(1–4):105–156, DOI: https://doi.org/10.1016/0166-5162(89)90049-9

    Article  Google Scholar 

  • Chen H, Wang Q (2006) The behaviour of organic matter in the process of soft soil stabilization using cement. Bulletin of Engineering Geology and the Environment 65:445–448, DOI: https://doi.org/10.1007/s10064-005-0030-1

    Article  Google Scholar 

  • Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecology and Management 13(6):671–684, DOI: https://doi.org/10.1007/s11273-005-0965-9

    Article  Google Scholar 

  • Clare KE, Sherwood PT (1954) The effect of organlc matter on the setting of soil-cement mixtures. Journal of Applied Chemistry 4: 625–630, DOI: https://doi.org/10.1002/jctb.5010041107

    Article  Google Scholar 

  • Deboucha S, Hashim R, Alwi A (2008) Engineering properties of stabilized tropical peat soils. Electronic Journal of Geotechnical Engineering 13:1–9

    Google Scholar 

  • Dehghanbanadaki A, Ahmad K, Ali N (2013) Influence of natural fillers on shear strength of cement treated peat. Journal of the Croatian Association of Civil Engineers 65(7):633–640, DOI: https://doi.org/10.14256/jce.814.2013

    Article  Google Scholar 

  • Dehghanbanadaki A, Arefnia A, Keshtkarbanaeemoghadam A, Ahmad K, Motamedi S, Hashim R (2017) Evaluating the compression index of fibrous peat treated with different binders. Bulletin of Engineering Geology and the Environment 76(2):575–586, DOI: https://doi.org/10.1007/s10064-016-0890-6

    Article  Google Scholar 

  • Dehghanbanadaki A, Khari M, Arefnia A, Ahmad K, Motamedi S (2019) A study on UCS of stabilized peat with natural filler: A computational estimation approach. KSCE Journal of Civil Engineering 23(4):1560–1572, DOI: https://doi.org/10.1007/s12205-019-0343-4

    Article  Google Scholar 

  • Dekker LW, Ritsema CJ (1996) Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. CATENA 28:89–105, DOI: https://doi.org/10.1016/S0341-8162(96)00047-1

    Article  Google Scholar 

  • Duraisamy Y, Huat BBK, Aziz AA (2007a) Compressibility behavior of tropical peat reinforced with cement columns. American Journal of Applied Sciences 4(10):786–791, DOI: https://doi.org/10.3844/ajassp.2007.786.791

    Article  Google Scholar 

  • Duraisamy Y, Huat BBK, Aziz AA (2007b) Engineering properties and compressibility behavior of tropical peat soil. American Journal of Applied Sciences 4(10):768–773, DOI: https://doi.org/10.3844/ajassp.2007.768.773

    Article  Google Scholar 

  • Duraisamy Y, Huat BBK, Muniandy R, Aziz AA (2009) Compressibility behavior of fibrous peat reinforced with cement columns. Geotechnical and Geological Engineering 27(5):619–629, DOI: https://doi.org/10.1007/s10706-009-9262-3

    Article  Google Scholar 

  • EuroSoilStab (2002) Development of design and construction methods to stabilize soft organic soils: Design guide soft soil stabilization. CT97-0351, Project no. BE 96-3177, Industrial and Materials Technologies Programme (Brite-EuRam III)

  • Farrell ER (2012) Organic/peat soils. In: Geotechnical engineering principles, problematic soils and site investigation. ICE Publishing, London, UK, 463–479

    Google Scholar 

  • Fox PJ, Edil B, Li-Tus L (1992) Ca/Cc concept to compression of peat. Journal of Geotechnical Engineering 118(8):1256–1263, DOI: https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1256)

    Article  Google Scholar 

  • Gofar N, Sutejo Y (2007) Long term compression behavior of fibrous peat. Malaysian Journal of Civil Engineering 19(2):14–26

    Google Scholar 

  • Gonçalves JP, Tavares LM, Filho RDT, Fairbairn EMR (2009) Performance evaluation of cement mortars modified with metakaolin or ground brick. Construction and Building Materials 23(5):1971–1979, DOI: https://doi.org/10.1016/j.conbuildmat.2008.08.027

    Article  Google Scholar 

  • Gorham E, Janssens JA, Glaser PH (2003) Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Canadian Journal of Botany 81(5):429–438, DOI: https://doi.org/10.1139/B03-036

    Article  Google Scholar 

  • Haan D (1997) An overview of the mechanical behaviour of peat and organic soil. Proceedings of conference on recent advances in soft soil engineering, March 5–7, Kuching, Malaysia

  • Haigh SK (2012) Mechanics of the casagrande liquid limit test. Canadian Geotechnical Journal 49(9):1015–1023, DOI: https://doi.org/10.1139/T2012-066

    Article  Google Scholar 

  • Haigh S (2016) Consistency of the casagrande liquid limit test. Geotechnical Testing Journal 39(1):13–19, DOI: https://doi.org/10.1520/GTJ20150093

    Article  Google Scholar 

  • Haigh SK, Vardanega PJ, Bolton MD, Barnes GE (2014) The plastic limit of clays. Geotechnique 64(7):5840586, DOI: https://doi.org/10.1680/geot.13D.06

    Article  Google Scholar 

  • Hampton MB, Edil TB (1998) Strength gain of organic ground with cement-type binders. In: Soil improvement for big digs. American Society of Civil Engineers (ASCE) Press, Reston, VA, USA, 135–148

    Google Scholar 

  • Haq A, Iqbal Y, Khan MR (2008) Historical development in the classification of kaolin subgroup. Journal of Pakistan Materials Society 2(1):44–49

    Google Scholar 

  • Harbi R, Derabla R, Nafa Z (2017) Improvement of the properties of a mortar with 5% of kaolin fillers in sand combined with metakaolin, brick waste and glass powder in cement. Construction and Building Materials 152:632–641, DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.062

    Article  Google Scholar 

  • Hashemi M, Vahidi M, Kaviani A (2019) Effect of thermal stabilization of soil, bentonite, calcium carbonate and fibers on behavior properties of clay soil. Journal of Civil Engineering and Materials Application 3(1):55–64, DOI: https://doi.org/10.22034/jcema.2019.92028

    Google Scholar 

  • Hashim R, Islam MS (2008) Engineering properties of peat soils in Peninsular, Malaysia. Journal of Applied Science 8(22):4215–4219, DOI: https://doi.org/10.3923/jas.2008.4215.4219

    Article  Google Scholar 

  • Hassan N, Wan Hassan WH, Rashid ASA, Latifi N, Mohd Yunus NZ, Horpibulsuk S, Moayedi H (2019) Microstructural characteristics of organic soils treated with biomass silica stabilizer. Environmental Earth Sciences 78(12):1–9, DOI: https://doi.org/10.1007/s12665-019-8369-y

    Article  Google Scholar 

  • Hayashi H, Nishimoto S (2005) Strength characteristic of stabilized peat using different types of binders. Proceedings of the International Conference of Deep Mixing Best Practices and Recent Advances, Deep Mixing 5:55–62

    Google Scholar 

  • Hebib S, Farrell ER (2003) Some experiences on the stabilization of Irish peats. Canadian Geotechnical Journal 40(1):107–120, DOI: https://doi.org/10.1139/T02-091

    Article  Google Scholar 

  • Hobbs NB (1986) Mire morphology and the properties and behaviour of some British and foreign peats. Quarterly Journal of Engineering Geology 19(1):7–80, DOI: https://doi.org/10.1144/gsl.qjeg.1986.019.01.02

    Article  Google Scholar 

  • Huat BBK, Kazemian S, Prasad A, Barghchi M (2011) A study of the compressibility behavior of peat stabilized by DMM: Lab model and FE analysis. Scientific Research and Essays 6(1):196–204, DOI: https://doi.org/10.5897/SRE10.790

    Google Scholar 

  • Huat BBK, Maail S, Mohamed TA (2005) Effect of chemical admixtures on the engineering properties of tropical peat soils. American Journal of Applied Sciences 2(7):1113–1120, DOI: https://doi.org/10.3844/ajassp.2005.1113.1120

    Article  Google Scholar 

  • Huat BBK, Prasad A, Asadi A, Kazemian S (2014) Engineering properties of peat and organic soils. In: Geotechnics of organic soils and peat. CRC Press, Boca Raton, FL, USA, 1–52, DOI: https://doi.org/10.1201/b15627

    Chapter  Google Scholar 

  • Huttunen E, Kujala K, Vesa H (1996) Assessment of the quality of stabilized peat and clay. Symposium Grouting and Deep Mixing 607–612

  • Ibrahim A, Huat BBK, Asadi A, Nahazanan H (2014) Foundation and embankment construction in peat: An overview. Electronic Journal of Geotechnical Engineering 19:10079–10094

    Google Scholar 

  • Islam MS, Hashim R (2009) Bearing capacity of stabilised tropical peat by deep mixing method. Australian Journal of Basic and Applied Sciences 3(2):682–688

    Google Scholar 

  • Jais MIB, Abdullah N, Md Ali MA, Johar MA (2019a) Peat modification integrating Geopolymer and fly ash. GEOTROPIKA 2019 527(1):1–15, DOI: https://doi.org/10.1088/1757-899X/527/1/012021

    Google Scholar 

  • Jais MIB, Che Lat D, Tengku Endut TND (2019b) Compressiblity of peat soil improved with polyurethane. Malaysian Journal of Civil Engineering 31(1):35–41, DOI: https://doi.org/10.11113/mjce.v31n1.545

    Google Scholar 

  • Janz M, Johansson S-E (2002) 9th report: The function of different binding agents in deep stabilization. Swedish Deep Stabilization Research Centre, Linköping, Sweden

    Google Scholar 

  • Johari NN, Bakar I, Razali SNM, Wahab N (2016) Fiber effects on compressibility of peat. Soft Soil Engineering International Conference 136(1), DOI: https://doi.org/10.1088/1757-899X/136/1/012036

  • Kalantari B (2011) Strength evaluation of air cured, cement treated peat with blast furnace slag. Geomechanics and Engineering 3(3):1–12, DOI: https://doi.org/10.12989/gae.2011.3.3.207

    Article  Google Scholar 

  • Kalantari B, Huat BBK (2008) Peat soil stabilization, using ordinary Portland cement, polypropylene fibers, and air curing technique. Electronic Journal of Geotechnical Engineering 13:1–13

    Google Scholar 

  • Kalantari B, Huat BBK, Prasad A (2010) Effect of polypropylene fibers on the California bearing ratio of air cured stabilized tropical peat soil. American Journal of Engineering and Applied Sciences 3(1):1–6, DOI: https://doi.org/10.3844/ajeassp.2010.1.6

    Article  Google Scholar 

  • Kalantari B, Prasad A (2011) Stabilising peat soil with cement and silica fume. Proceedings of the Institution of Civil Engineers 164(1):33–39, DOI: https://doi.org/10.1680/geng.900044

    Google Scholar 

  • Kalantari B, Prasad A (2014) A study of the effect of various curing techniques on the strength of stabilized peat. Transportation Geotechnics 1(3):119–128, DOI: https://doi.org/10.1016/j.trgeo.2014.06.002

    Article  Google Scholar 

  • Kalantari B, Prasad A, Huat BBK (2010) Peat stabilization using cement, Polypropylene and steel fibres. Geomechanics and Engineering 2(4):321–335, DOI: https://doi.org/10.12989/gae.2010.2.4.321

    Article  Google Scholar 

  • Kamaruidzaman NS, Khaidir M, Talib A, Amirah N, Adnan Z, Madun A, Abidin HZ, Dan MF (2019) Peat Stabilization by using sugarcane bagasse ash (SCBA) as a partial cement replacement materials. International Journal of Integrated Engineering 11(6):204–213

    Article  Google Scholar 

  • Kasama K, Zen K, Iwataki K (2006) Undrained shear strength of cement-treated soils. Soils and Foundations 46(2):221–232, DOI: https://doi.org/10.3208/sandf.46.221

    Article  Google Scholar 

  • Kasama K, Zen K, Iwataki K (2007) High-strengthening of cement-treated clay by mechanical dehydration. Soils and Foundations 47(2):171–184, DOI: https://doi.org/10.3208/sandf.47.171

    Article  Google Scholar 

  • Kazemian S, Huat BBK (2009) Compressibility characteristics of fibrous tropical peat reinforced with cement column. Electronic Journal of Geotechnical Engineering 14

  • Kazemian S, Huat BBK, Prasad A, Barghchi M (2011) A state of art review of peat: Geotechnical engineering perspective. International Journal of Physical Sciences 6(8):1974–1981

    Google Scholar 

  • Keller WD, Cheng H, Johns WD, Meng C (1980) Kaolin from the original Kauling (Gaoling) Mine locality, Kiangsi Province, China. Clays and Clay Minerals 28(2):97–104, DOI: https://doi.org/10.1346/CCMN.1980.0280204

    Article  Google Scholar 

  • Kempfert H-G, Gebreselassie B (2006) Shallow foundations on soft soils. Excavations and Foundations in Soft Soils 275–347, DOI: https://doi.org/10.1007/3-540-32895-5_5

  • Khan A, Adil M, Ahmad A, Hussain R, Zaman H (2018) Stabilization of soil using cement and bale straw. International Journal of Advance Engineering and Research Development 5(09):44–49

    Google Scholar 

  • Kifli AZ, Zainorabidin A, Mohd S, Masirin MIM (2016) Physical properties of peat in Sibu, Sarawak. International conference on problematic soils 2016, Bandung, Indonesia

  • Kolay P, Aminur M (2011) Physical and geotechnical characteristics of stabilized and unstabilized tropical peat soil. World Journal of Engineering 8(3):223–230

    Article  Google Scholar 

  • Kolay PK, Pui M (2010) Peat Stabilization using gypsum and fly ash. UNIMAS E-Journal of Civil Engineering 1(2):1–5, DOI: https://doi.org/10.33736/jcest.75.2010

    Google Scholar 

  • Kolay PK, Rahman MA (2016) Physico-geotechnical properties of peat and its stabilisation. Proceedings of the Institution of Civil Engineers: Ground Improvement 169(3):206–216, DOI: https://doi.org/10.1680/jgrim.15.00025

    Google Scholar 

  • Kolay P, Sii H, Taib S (2012) Compressibility characteristics of tropical peat using Rowe cell consolidation. World Journal of Engineering 9(4):277–284, DOI: https://doi.org/10.1260/1708-5284.9.4.277

    Article  Google Scholar 

  • Koumoto T, Houlsby GT (2001) Theory and practice of the fall cone test. Géotechnique 51(8):701–712, DOI: https://doi.org/10.1680/geot.51.8.701.40475

    Article  Google Scholar 

  • Kujala K, Makikyro M, Lehto O (1996) Effect of humus on the binding reaction in stabilized soils. The 2nd International Conference on Ground Improvement Geosystems, Tokyo, Japan, 415–420

  • Landva AO, Pheeney PE (1980) Peat fabric and structure. Canadian Geotechnical Journal 17(3):416–435, DOI: https://doi.org/10.1139/t80-048

    Article  Google Scholar 

  • Latifi N, Rashid ASA, Marto A, Tahir MM (2016) Effect of magnesium chloride solution on the physico-chemical characteristics of tropical peat. Environmental Earth Sciences 75(3):1–9, DOI: https://doi.org/10.1007/s12665-015-4788-6

    Article  Google Scholar 

  • Latifi N, Siddiqua S, Marto A (2019) Stabilization of tropical peat using liquid polymer. In: Zhan L, Chen Y, Bouazza A (eds) Proceedings of the 8th international congress on environmental geotechnics. Springer, Singapore, DOI: https://doi.org/10.1007/978-981-13-2221-1_94

    Google Scholar 

  • Lee KH, Lee S (2002) Mechanical properties of weakly bonded cement stabilized Kaolin. KSCE Journal of Civil Engineering 6(12):389–398, DOI: https://doi.org/10.1007/BF02841993

    Article  Google Scholar 

  • Lersow M (2001) Deep soil compaction as a method of ground improvement and to stabilization of wastes and slopes with danger of liquefaction, determining the modulus of deformation and shear strength parameters of loose rock. Waste Management 21(2):161–174, DOI: https://doi.org/10.1016/S0956-053X(00)00066-0

    Article  Google Scholar 

  • Ling FNL, Kassim KA, Karim ATA, Tan CK, Tiong KPC (2014) Geotechnical properties of malaysian organic soils: Case study in Batu Pahat, Johor. International Journal of Integrated Engineering 6(2):52–59

    Google Scholar 

  • Long M, Boylan N (2012) In-situ testing of peat — A review and update on recent developments. Geotechnical Engineering 43(4):41–55

    Google Scholar 

  • Maas A (1996) A note on the formation of peat deposits in Indonesia. Tropical Lowland Peatlands of Southeast Asia: Proceedings of a Workshop on Integrated Planning and Management of Tropical Lowland Peatlands, Cisarua, Indonesia

  • Maclaren DC, White MA (2003) Cement: Its chemistry and properties. Journal of Chemical Education 80(6):623–635, DOI: https://doi.org/10.1021/ed080p623

    Article  Google Scholar 

  • Md Yusof Z, Mohd Harris SN, Mohamed K (2015) Compressive strength improvement of stabilized peat soil by pond ash — Hydrated lime admixture. Applied Mechanics and Materials 747:242–245, DOI: https://doi.org/10.4028/www.scientific.net/amm.747.242

    Article  Google Scholar 

  • Md Zahri A, Zainorabidin A (2019) An overview of traditional and non traditional stabilizer for soft soil. 11th international conference on geotechnical engineering in tropical regions (GEOTROPIKA) and 1st international conference on highway and transportation engineering (ICHITRA) 2019, February 27–28, Kuala Lumpur, Malaysia, DOI: https://doi.org/10.1088/1757-899X/527/1/012015

  • Medina E, Cuevas E, Huber O (2011) Origin of organic matter leading to peat formation in the Southeastern Guayana uplands and highlands. In: Zinck J, Huber O (eds) Peatlands of the Western Guayana Highlands, Venezuela. Springer, Berlin, Heidelberg, Germany, DOI: https://doi.org/10.1007/978-3-642-20138-7_8

    Google Scholar 

  • Melling L (2015) Peatland in Malaysia. In: Osaki M, Tsuji N (eds) Tropical peatland ecosystems. Springer, Tokyo, Japan

    Google Scholar 

  • Mesri G, Castro A (1989) Ca/Cc concept and Ko during secondary compression. Journal of Geotechnical Engineering 115(2):273–277

    Article  Google Scholar 

  • Mesri G, Stark TD, Ajlouni MA, Chen CS (1997) Secondary compression of peat with or without surcharging. Journal of Geotechnical and Geoenvironmental Engineering 123(5):411–421, DOI: https://doi.org/10.1061/(asce)1090-0241(1997)123:5(411)

    Article  Google Scholar 

  • Moayedi H, Nazir R (2018) Malaysian experiences of peat stabilization, state of the art. Geotechnical and Geological Engineering 36(1):1–11, DOI: https://doi.org/10.1007/s10706-017-0321-x

    Article  Google Scholar 

  • Mohamad HM, Zainorabidin A, Nurul S, Zolkefle A (2020) Determination of the post-cyclic yield strength. International Journal of Geomate 18(70):172–177, DOI: https://doi.org/10.21660/2020.70.6676

    Article  Google Scholar 

  • Moo-Young HK, Zimmie TF (1997) Waste minimization and re-use of paper sludges in landfill covers: A case study. Waste Management and Research 15(6):593–605, DOI: https://doi.org/10.1006/wmre.1996.0114

    Article  Google Scholar 

  • Moo-Young HK, Zimmie TF (1998) Geotechnical properties of paper mill sludges for use in landfill covers. Journal of Geotechnical and Geoenvironmental Engineering 124(4):370–370, DOI: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(370)

    Article  Google Scholar 

  • Muhardi Wibisono G, Febrie RZH (2019) Peat soils stabilization using lime-cement mixture to prevent peat fires. International Conference on Advances in Civil and Environmental Engineering (ICAnCEE 2018) 276:1–8, DOI: https://doi.org/10.1051/matecconf/201927605006

    Google Scholar 

  • Munro R (2004) Dealing with bearing capacity problems on low volume roads constructed on peat. The Highland Council

  • Nath BD, Molla KA, Sarkar G (2017) Study on strength behavior of organic soil stabilized with fly ash. International Scholarly Research Notices 1–6, DOI: https://doi.org/10.1155/2017/5786541

  • Nikookar M, Arabani M, Mirmao’zen SM, Pashaki MK (2016) Experimental evaluation of the strength of peat stabilized with hydrated lime. Periodica Polytechnica Civil Engineering 60(4):491–502, DOI: https://doi.org/10.3311/PPci.8159

    Article  Google Scholar 

  • O’Kelly BC (2009) Development of a large consolidometer apparatus for testing peat and other highly organic soils. SUO (Society of Urologic Oncology) 60(1–2):23–36

    Google Scholar 

  • O’Kelly BC (2014) Characterisation and undrained strength of amorphous clay. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 167(3):311–320, DOI: https://doi.org/10.1680/geng.11.00025

    Google Scholar 

  • O’Kelly BC (2015) Atterberg limits are not appropriate for peat soils. Geotechnical Research 2(3):123–134, DOI: https://doi.org/10.1680/jgere.15.00007

    Article  Google Scholar 

  • O’Kelly BC, Orr TLL (2014) Briefing: Effective-stress strength of peat in triaxial compression. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 167(5):417–420, DOI: https://doi.org/10.1680/geng.13.00143

    Google Scholar 

  • O’Kelly BC, Vardanega PJ, Haigh SK (2018) Use of fall cones to determine Atterberg limits: A review. Geotechnique 68(10):843–856, DOI: https://doi.org/10.1680/jgeot.17.R.039

    Article  Google Scholar 

  • Osman KT (2018) Peat soils. In: Management of soil problems: An introduction. Springer, Berlin, Germany, 146–183

    Chapter  Google Scholar 

  • Paramananthan S (2010) Keys to the identification of Malaysian soils according to parent materials, 2nd edition. Param Agricultural Soil Surveys (M) Sdn. Bhd.

  • Paul A, Hussain M (2020) Cement stabilization of Indian peat: An experimental investigation. Journal of Materials in Civil Engineering 32(11):04020350, DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0003363

    Article  Google Scholar 

  • Prakash K, Sridharan A, Prasanna HS (2009) A note on the determination of plastic limit of fine-grained soils. Geotechnical Testing Journal 32(4):372–374, DOI: https://doi.org/10.1520/GTJ101960

    Google Scholar 

  • Putri EE, Yuliet R, Harris LE, Makinda J (2020) Stabilization of rimbo Panjang peat soil using lightweight materials mixed with cement as subgrade for road pavement. International Journal of GEOMATE 18(66):30–36, DOI: https://doi.org/10.21660/2020.66.9180

    Article  Google Scholar 

  • Rahman ZA, Sulaiman N, Rahim SA, Idris WMR, Lihan T (2016) Effect of cement additive and curing period on some engineering properties of treated peat soil. Sains Malaysiana 45(11):1679–1687

    Google Scholar 

  • Rahmi A, Taib SNL, Sahdi F (2018) Investigation of the application of various water additive ratios on unconfined compressive strength of cement-stabilized amorphous peat at different natural moisture contents. Advances in Civil Engineering 2018:1–9, DOI: https://doi.org/10.1155/2018/1945808

    Article  Google Scholar 

  • Ramadhansyah PJ, Awang H, Nur Amirah MS, Khairul Idham MSM, Haryati Y, Rosli MH, Norhidayah AH, Naquiddin MWM, Abdul Hamid AR, Mohd Rosli MH (2018) Performance of asphalt mixture incorporating kaolin clay at different aging. The 12th International Civil Engineering Post Graduate Conference (SEPKA), The 3rd International Symposium on Expertise of Engineering Design (ISEED), DOI: https://doi.org/10.1088/1755-1315/220/1/012004

  • Razali SNM, Zainorabidin A, Bakar I, Mohamad HM (2018) Strength changes in peat-polymer stabilization process. International Journal of Integrated Engineering 10(9):136–141

    Google Scholar 

  • Saberian M, Rahgozar MA (2016) Geotechnical properties of peat soil stabilised with shredded waste tyre chips in combination with gypsum, lime or cement. Mires and Peat 18:1–16, DOI: https://doi.org/10.19189/MaP.2015.OMB.211

    Google Scholar 

  • Sabir BB, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: A review. Cement & Concrete Composites 23:441–454, DOI: https://doi.org/10.1016/S0958-9465(00)00092-5

    Article  Google Scholar 

  • Sagiri MA, Orangi J, Asatourian A, Gutmann JL, Garcia-Godoy F, Lotfi M, Sheibani N (2018) Calcium silicate-based cements and functional impacts of various constituents. Dent Mater Journal 36(1):8–18

    Article  Google Scholar 

  • Said J, Taib SNL (2009) Peat stabilization with carbide lime. UNIMASE-Journal of Civil Engineering 1(1):3–8, DOI: https://doi.org/10.33736/jcest.64.2009

    Google Scholar 

  • Samet B, Mnif T, Chaabouni M (2007) Use of a kaolinitic clay as a pozzolanic material for cements: Formulation of blended cement. Cement & Concrete Composites 29:741–749, DOI: https://doi.org/10.1016/j.cemconcomp.2007.04.012

    Article  Google Scholar 

  • Sangok FE, Sugiura Y, Maie N, Melling L, Nakamura T, Ikeya K, Watanabe A (2020) Variations in the rate of accumulation and chemical structure of soil organic matter in a coastal peatland in Sarawak, Malaysia. Catena 184:104244, DOI: https://doi.org/10.1016/j.catena.2019.104244

    Article  Google Scholar 

  • Sapar NIF, Matlan SJ, Mohamad HM, Alias R (2020) A study on physical and morphological characteristics of tropical peat in Sabah. International Journal of Advanced Research in Engineering and Technology (IJARET) 11(11):542–553

    Google Scholar 

  • Sherwood PT, Ryley M (1970) An investigation of a cone-penetrometer method for the determination of the liquid limit. Géotechnique 20(2):203–208, DOI: https://doi.org/10.1680/geot.1970.20.2.203

    Article  Google Scholar 

  • Sing WL, Hashim R, Ali FH (2008) Behavior of stabilized peat soils in unconfined compression tests. American Journal of Engineering and Applied Sciences 1(4):274–279

    Article  Google Scholar 

  • Sing WL, Hashim R, Ali F (2011) Unconfined compressive strength characteristics of stabilized peat. Scientific Research and Essays 6(9):1915–1921

    Article  Google Scholar 

  • Sivapullaiah PV, Sridharan A (1985) Liquid limit of soil mixtures. Geotechnical Testing Journal 8(3):111–116, DOI: https://doi.org/10.1520/GTJ10521J

    Article  Google Scholar 

  • Skempton AW, Petley DJ (1970) Ignition loss and other properties of peats and clays from Avonmouth, King’s Lynn and Cranberry Moss. Geotechnique 20(4):343–356, DOI: https://doi.org/10.1680/geot.1970.20.4.343

    Article  Google Scholar 

  • Taggart MS, Milligan WO, Studer HP (1954) Electron micrographic studies of clays. Clays Clay Miner 3:31–64, DOI: https://doi.org/10.1346/CCMN.1954.0030104

    Article  Google Scholar 

  • Tang BL, Bakar I, Chan CM (2011) Reutilization of organic and peat soils by deep cement mixing. International Journal of Civil and Environmental Engineering 5(2):87–92, DOI: https://doi.org/10.5281/zenodo.1075466

    Google Scholar 

  • Timoney MJ, Mccabe BA, Bell AL (2012) Experiences of dry soil mixing in highly organic soils. Proceedings of the Institution of Civil Engineers: Ground Improvement 165(1):3–14, DOI: https://doi.org/10.1680/grim.2012.165.1.3

    Google Scholar 

  • Trauner L, Dolinar B, Mišič M (2005) Relationship between the undrained shear strength, water content, and mineralogical properties of fine-grained soils. International Journal of Geomechanics 5(4):350–355, DOI: https://doi.org/10.1061/(ASCE)1532-3641(2005)5:4(350)

    Article  Google Scholar 

  • Tremblay H, Duchesne J, Locat J, Leroueil S (2002) Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Journal of Geotechnical Engineering 39(3):535–546, DOI: https://doi.org/10.1139/T02-002

    Article  Google Scholar 

  • Vardanega PJ, Hickey CL, Lau K, Sarzier HDL, Couturier CM, Martin G (2019) Investigation of the Atterberg limits and undrained fall-cone shear strength variation with water content of some peat soils. International Journal of Pavement Research and Technology 12(2):131–138, DOI: https://doi.org/10.1007/s42947-019-0017-0

    Article  Google Scholar 

  • Vishwanath G, Pramod K, Ramesh V (2014) Peat soil stabilization with rice husk ash and lime powder. International Journal of Innovation and Scientific Research 9(2):225–227

    Google Scholar 

  • Wahab A, Embong Z, Hasan M, Musa H, Zaman QUZ, Ullah H (2020) Peat soil engineering and mechanical properties improvement under the effect of EKS technique at Parit Kuari, Batu Pahat, Johor, West Malaysia. Bulletin of the Geological Society of Malaysia 70:133–138, DOI: https://doi.org/10.7186/bgsm70202011

    Article  Google Scholar 

  • Wong LS, Hashim R, Ali F (2013) Improved strength and reduced permeability of stabilized peat: Focus on application of kaolin as a pozzolanic additive. Construction and Building Materials 40:783–792, DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.065

    Article  Google Scholar 

  • Yang J, Dykes AP (2006) The liquid limit of peat and its application to the understanding of Irish blanket bog failures. Landslides 3(3):205–216, DOI: https://doi.org/10.1007/s10346-006-0038-z

    Article  Google Scholar 

  • Yong RN, Ouhadi VR (2007) Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Applied Clay Science 35(3–4):238–249, DOI: https://doi.org/10.1016/j.clay.2006.08.009

    Article  Google Scholar 

  • Yusof NZ, Samsuddin NS, Hanif MF, Syed Osman SB (2018) Peat soils stabilization using effective microorganisms (EM). Conference Series: Earth and Environmental Science 140(1):1–8, DOI: https://doi.org/10.1088/1755-1315/140/1/012088

    Google Scholar 

  • Yuswandono M, Somantri AK, Rabiya R (2020) Comparison of Rowe cell and oedometer test to determine peat soil consolidation parameters. The 3rd International Conference on Innovation in Engineering and Vocational Education (ICIEVE 2019) 830(2):1–6, DOI: https://doi.org/10.1088/1757-899X/830/2/022053

    Google Scholar 

  • Zain NHM, Zulastry MI (2020) Compressive strength of peat soil treated with waste tyre granules. International Conference on Architecture and Civil Engineering (ICACE-2019) 59:185–192, DOI: https://doi.org/10.1007/978-981-15-1193-65

    Google Scholar 

  • Zainorabidin A, Abdurahman MN, Kassim A, Azlan MFMD, Razali SN, Ab Rahman ESE (2019) Settlement behaviour of Parit Nipah peat under static embankment. International Journal of GEOMATE 17(60):151–155, DOI: https://doi.org/10.21660/2019.60.8263

    Article  Google Scholar 

  • Zainorabidin A, Mansor H (2016) Investigation on the shear strength characteristic at Malaysian peat. ARPN Journal of Engineering and Applied Sciences 11(3):1600–1606

    Google Scholar 

  • Zainorabidin A, Mohamad HM (2016) A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering 21(20):6671–6687

    Google Scholar 

  • Zambri NM, Ghazaly Z (2018) Peat soil stabilization using lime and cement. International Conference on Civil & Environmental Engineering (CENVIRON 2017) 1–7, DOI: https://doi.org/10.1051/e3sconf/20183401034

  • Zulkifley MTM, Ng TF, Raj JK, Hashim R, Bakar AFA, Paramanthan, S, Ashraf MA (2014) A review of the stabilization of tropical lowland peats. Bulletin of Engineering Geology and the Environment 73(3):733–746, DOI: https://doi.org/10.1007/s10064-013-0549-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Ali Mohammed Al-Bared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Sutanto, M.H., Al-Bared, M.A.M. et al. Physio-Chemical Properties, Consolidation, and Stabilization of Tropical Peat Soil Using Traditional Soil Additives — A State of the Art Literature Review. KSCE J Civ Eng 25, 3662–3678 (2021). https://doi.org/10.1007/s12205-021-1247-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-021-1247-7

Keywords

Navigation