Skip to main content
Log in

Effects of particle shape and size distribution on the shear strength behavior of composite soils

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The effects of particle shape and size distribution on the constitutive behavior of composite soils with a wide range of particle size were investigated. Two comparable sets of specimens were prepared: (1) mixtures of fines (clay and silt) and an ideal coarse fraction (glass sand and beads), and (2) mixtures of fines and natural coarse fraction (river sand and crushed granite gravels). Direct shear box testing was undertaken on 34 samples and the structure of the shear surfaces, change in volume and water content and the particle shape coefficient of the sheared specimens were examined. The results indicate that the contraction/dilation a specimen exhibits is restrained within the shear zone while the outer zones remain unchanged during shearing. An increased coarse fraction leads to an increase in constant volume shear strength. In addition, increasing elongation or decreasing convexity of the coarse fraction increases the constant volume friction angle. The overall roughness of the shear surface at constant volume state is negatively related to particle smoothness (convexity) and positively related to the area of the shear surface occupied by particles with particular shapes. Two equations are proposed for the estimation of constant volume friction angle based on the proportion and shape coefficient of the coarse fraction. It is hoped this will assist in considering the shear strength of mixed soils when the size of the coarse fraction makes laboratory testing difficult.

Résumé

Les effets de la forme et de la granularité des particules sur le comportement rhéologique de sols composites, considérant une large gamme de taille des particules, ont été étudiés. Deux ensembles comparables d’échantillons ont été préparés: (1) des mélanges de sols fins (argile et limon) avec une fraction grossière artificielle (sable de verre et perles), et (2) des mélanges de sols fins avec une fraction grossière naturelle (sable de rivière et graviers de granite concassé). Des essais de cisaillement direct à la boîte ont été réalisés sur 34 échantillons. La structure des surfaces de cisaillement, les changements de volume et de teneur en eau ainsi que le coefficient de forme des particules des échantillons cisaillés ont été analysés. Les résultats indiquent que la contractance/dilatance présentée par les échantillons ne concerne que la zone de cisaillement, tandis que les autres parties des échantillons restent inchangées pendant le cisaillement. Une augmentation de la fraction grossière conduit à une augmentation de la résistance au cisaillement à volume constant. En outre, une augmentation de l’allongement ou une diminution de la convexité des particules de la fraction grossière conduit à une augmentation de l’angle de frottement lors d’un cisaillement à volume constant. La rugosité globale de la surface de cisaillement pour un cisaillement à volume constant est reliée négativement à l’émoussé des particules (convexité) et positivement à la fraction de surface de cisaillement occupée par des particules de formes particulières. Deux équations sont proposées, pour l’estimation de l’angle de frottement relatif à un cisaillement à volume constant. Elles sont basées sur la proportion et sur le coefficient de forme de la fraction grossière. On espère que cela aidera à l’analyse de la résistance au cisaillement de sols composites lorsque la taille de la fraction grossière rend la réalisation des essais en laboratoire difficile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • American Society for Testing and Materials (2004) ASTM D3080—04 Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions

  • Asmirza FT (2004) Direct shear testing. Technical Report, University of Sumatera Utara

  • Bridgwater J (1980) On the width of failure zones. Geotechnique 30(4):533–536

    Article  Google Scholar 

  • Cerato AB (2005) Scale effects of shallow foundation bearing capacity on granular materials. PhD dissertation, University of Massachusetts, Amberst

  • Cho GC, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 132:591–602

    Article  Google Scholar 

  • Cubrinovski M, Ishihara K (2002) Maximum and minimum void ratio characteristics of sands. Soils Found 42(6):65–78

    Article  Google Scholar 

  • de Graff-Johnson JWS, Bhatia HS, Gidigasu DM (1969) The strength characteristics of residual micaceous soils and their application to stability problems. In: Proc. 7th Int’l Conf Soil Mech Found Engrg Mexico, pp 165–172

  • Dejong JT, Randolph ME, White DJ (2003) Interface load transfer degradation during cyclic loading: a micro-scale investigation. Soils Found 43(4):81–93

    Article  Google Scholar 

  • Dyskin AV, Estrin Y, Kanel-Belov AJ, Pasternak E (2001) Toughening by fragmentation—how topology helps. Adv Eng Mater 3(1):885–888

    Article  Google Scholar 

  • Fukuoka H, Sassa K, Wang G, Sasaki R (2006) Observation of shear zone development in ring-shear apparatus with a transparent shear box. Landslides 3(2):239–251

    Article  Google Scholar 

  • Guimaraes M (2002) Crushed stone fines and ion removal from clay slurries—fundamental studies. Ph.D. thesis, Georgia Institute of Technology, Atlanta

  • Hartley S (1982) Shear bands in sand, Part II. Project report, Department of Engineering, University of Cambridge

  • Hight DW, Georgiannou VN, Martin PL, Mundegar AK (1998) Flow slides in micaceous sand. In: Yanagisawa E, Moroto N, Mitachi T (eds) Problematic soils. Sendai, Japan, pp 945–958

  • Holtz WG, Gibbs HJ (1956) Triaxial shear tests on previous gravelly soils. J Soil Mech Found Div ASCE 820(SM1):1–22

    Google Scholar 

  • Holtz WG, Willard M (1956) Triaxial shear characteristics of clayey gravel soils. J Soil Mech Found Eng ASCE 82:143–149

    Google Scholar 

  • Kakou BG, Shimizu H, Nishimura S (2001) Residual strength of colluvium and stability analysis of farmland slope. Agric Eng Int CIGR J Sci Res Dev 3:1–12

    Google Scholar 

  • Li YR, Aydin A (2010) Behavior of rounded granular materials in direct shear: mechanisms and quantification of fluctuations. Eng Geol 115(1–2):96–104

    Article  Google Scholar 

  • Li YR, Huang RQ, Chan LS, Chen J (2013a) Effects of particle shape on shear strength of clay-gravel mixture. J Civil Eng KSCE 17(4):712–717

    Google Scholar 

  • Li YR, Chan LS, Yeung AT, Xiang XQ (2013b) Effects of test conditions on shear behavior of composite soil. Geotech Eng Proc ICE 166(3):310–320

    Google Scholar 

  • Li YR, Aydin A, Xu Q, Chen J (2012) Constitutive behavior of binary mixtures of kaolin and glass beads in direct shear. J Civil Eng KSCE 16(7):1152–1159

    Article  Google Scholar 

  • Liu XL, Loo H, Min H, Deng JH, Tham LG, Lee CF (2006) Shear strength of slip soils containing coarse particles of Xietan landslide. In: Proceedings of sessions of Geo Shanghai, pp 195–207

  • Malvern Instruments (1999) Image analysis application note. Available at www.malvern.com/particleshape

  • Miller EA, Sowers GF (1957) The strength characteristics of soil-aggregate mixture. Highw Res Board Bull 183:16–23

    Google Scholar 

  • Mitchell JK (1993) Fundamentals of soil behavior, 2nd edn. Wiley

  • Miura K, Maeda K, Furukawa M, Toki S (1998) Mechanical characteristics of sands with different primary properties. Soils Found 38:159–172

    Article  Google Scholar 

  • Oda M, Konishi J (1974) Microscopic deformation mechanism of granular material in simple shear. Jpn Soc Soil Mech Found Eng 14(4):25–38

    Article  Google Scholar 

  • Patwardhan AS, Rao JS, Gaidhane RB (1970) Interlocking effects and shearing resistance of boulders and large size particles in a matrix of fines on the basis of large scale direct shear tests. In: Proc 2nd Southea Asian conf soil mech Singapore, pp 265–273

  • Petley DJ (1966) The shear strength of soils at large strains. PhD thesis, University of London

  • Potts DM, Dounias GT, Vaughan PR (1987) Finite element analysis of the direct shear box test. Geotechnique 37(1):11–23

    Article  Google Scholar 

  • Prakasha KS, Chandrasekaran VS (2005) Behavior of marine sand–clay mixtures under static and cyclic triaxial shear. J Geotech Geoenviron Eng 131(2):213–222

    Article  Google Scholar 

  • Roscoe KH (1970) Tenth rankin lecture: the influence of strains in soil mechanics. Geotechnique 20(2):129–170

    Article  Google Scholar 

  • Salimi SN, Yazdanjou V, Hamidi A (2008) Shape and size effects of gravel grains on the shear behavior of sandy soils. In: Chen (eds) Proceedings of 10th intl’ conf. on landslides and engineered slopes. China, pp 469–474

  • Santamrina JC, Cho GC (2004) Soil behavior: the role of particle shape. In: RJJardine, DMPotts, KG Higgins (Eds) Advances in geotechnical engineering: the skempton conference, vol 1. Thomas Telford, London, 604–617

  • Scarpelli G, Wood DM (1982) Experimental observations of shear band patterns in direct shear tests. In: IUTAM conference on deformation and failure of granular materials

  • Shakoor A, Cook BD (1990) The effect of stone content, size and shape on the engineering properties of a compacted silty clay. Bull Assoc Eng Geol XXVII(2): 245-253

    Google Scholar 

  • Shimobe S, Moroto N (1995) A new classification chart for sand liquefaction. In: Ishihara K (ed) Earthquake geotechnical engineering. Balkema, Rotterdam, pp 315–320

    Google Scholar 

  • Simoni A, Houlsby GT (2006) The direct shear strength and dilatancy of sand–gravel mixtures. Geotech Geol Eng 24:523–549

    Article  Google Scholar 

  • Stark TD, Eid HT (1994) Drained residual strength of cohesive soils. J Eng ASCE 120(5):856–871

    Google Scholar 

  • Tatsuoka F, Nakamura S, Huang CC, Tani K (1990) Strength anisotropy and shear band direction in plane strain tests of sand. Soils Found 30(1):35–56

    Article  Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics. Wiley, New York

    Google Scholar 

  • Vallejo LE, Zhou Y (1994) The mechanical properties of simulated soil-rock mixtures. In: Proc 13th int’l conf soil mech and found engrg, New Delhi, pp 365–368

  • Wang J, Dove JE, Gutierrez MS (2007) Discrete-continuum analysis of shear banding in the direct shear test. Geotechnique 57(6):513–526

    Article  Google Scholar 

  • Wu PK, Matsushima K, Tatsuoka F (2008) Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests. Geotech Test J 31(1):1–20

    Google Scholar 

  • Xu Z, Zhou G, Liu Z, Zhou J, Tian Q (2007) Correcting method and error analysis for sample area in direct shear test. J China Univ Min Tech 36(5):658–662

    Google Scholar 

  • Li YR, Huang RQ, Chan LS (accepted for publication) The rule of particle shape in shear strength of clay-gravel mixture. J Civil Eng KSCE

  • Yagiz S (2001) Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel mixtures. Bull Eng Geol Environ 60(321):323

    Google Scholar 

  • Yazdanjou, V, Salimi N, Hamidi A (2008) Effect of gravel content on the shear behavior of sandy soils. In: Proc. 4th national cong. on civil engrg, Tehran University, Iran

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant No. 51309176). The author is grateful to Dr. A. Aydin and Dr. A.T. Yeung whose comments and suggestions have improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanrong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y. Effects of particle shape and size distribution on the shear strength behavior of composite soils. Bull Eng Geol Environ 72, 371–381 (2013). https://doi.org/10.1007/s10064-013-0482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0482-7

Keywords

Navigation