Skip to main content
Log in

A comparative review in regards to estimating bearing capacity in jointed rock masses in northeast Jordan

  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

There are a number of different methods used for estimating the bearing capacity in jointed rock masses. In this paper, the geological strength index (GSI) introduced by Hoek et al. (1995) was used to estimate the bearing capacity of the rock mass via rock mass rating (RMR). An empirical relationship is proposed to estimate the bearing capacity of the rock mass using the GSI-dependent toughness factor (TF). The proposed formula was correlated with bearing capacity equations used in the literature. The regression analyses showed exponential relationships with a high correlation coefficient.

Résumé

Il existe de nombreuses méthodes différentes pour estimer la capacité portante d’un massif rocheux fracturé. Dans cet article, on utilise le geological strength index (GSI) introduit par Hoek et al. (1995) pour évaluer la capacité portante du massif rocheux en s’appuyant sur le Rock Mass Rating (RMR). On propose une relation empirique pour estimer la capacité portante du massif rocheux à partir de l’indice de ténacité (toughness factor—TF) qui dépend du GSI. La formule proposée est mise en relation avec les équations de portance données dans la littérature. Les analyses de régression montrent une relation exponentielle avec un fort coefficient de corrélation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6:189–236

    Google Scholar 

  • Bell GF (1992) Engineering in rock masses. Heinemann, London, 359 pp

  • Bender F (1974) Geologie von Jordanian: Beitraege zur regionolen Geologie der Erde. 7 Gebrueder Borntraeger, Hannover, 230 pp

    Google Scholar 

  • Bieniawski Z T (1973) Engineering classification of jointed rock masses. Trans S African Inst Civ Eng 15:335–344

    Google Scholar 

  • Bieniawski Z T (1974) Geomechanics classification of rock masses and its application in tunneling. Proc 3rd Cong Int Soc Rock Mechanics, September 1989, Denver, Colorado, National Academy of Sciences, Washington DC, pp 27–32

  • Bieniawski Z T (1976) Rock mass classification in rock engineering. In: Bieniawski ZT (ed) Exploration for rock engineering. Balkema, Cape Town, pp 97–106

  • Bieniawski ZT (1979) The Geomechanics classification in rock engineering applications. Proc 4th Cong on Rock Mech, October 1979, Balkema, Rotterdam

  • Bieniawski ZT (1989) Engineering rock mass classification. Wiley, Chichester, 251 pp

  • Bishnoi BL (1968) Bearing capacity of a closely jointed rocks. PhD Thesis, Georgia Institute of Technology, Atlanta, 120 pp

  • Bowles J (1988) Foundation analysis and design, 4th edn. McGraw Hill, New York, 1,004 pp

  • El-Manaai M, Enbaya M, Tarhuni M (2000) Suggested empirical method for bearing capacity determination in jointed carbonate rock masses, vol 2. In: Proc Jordanian Int Mining Conf, Jordanian Engineers Association, Amman, Jordan, pp 512–530

  • Goodman RE (1989) Introduction to rock mechanics. Wiley, New York, 562 pp

  • Kulhawy FH, Goodman RE (1980) Design of foundations on discontinuous rock. Proc Int Conf Structural Foundations on Rock, August 1980, Sydney, pp 209–220

  • Hoek E (1990) Technical note: estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. Int J Rock Mech Min Sci 27(3):227–229

    Article  Google Scholar 

  • Hoek E (2002) Practical rock engineering: an ongoing set of notes. http://www.rocscience.com

    Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. JGeotech Eng Div Am Soc Civ Eng 106:1013–1035

    Google Scholar 

  • Hoek E, Brown ET (1988) The Hoek-Brown failure criterion: a 1988 update. In: Proc 15th Cand Rock Mech Symp, University of Toronto, Toronto, October 1988

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavation in hard rocks. Balkema, Rotterdam, 215 pp

  • Peck RB, Hanson WE, Thornburn TH (1974) Foundation engineering. Wiley, New York, 514 pp

  • Priest S D, Hudson J A (1976) Discontinuity spacing in rock. Int J Rock Mech Min Sci 13:135–148

    Article  Google Scholar 

  • Piteau D R (1973) Characterizing and extrapolating rock joint properties in engineering practice Rock Mech 2:5–31

    Google Scholar 

  • Sower GF (1979) Introductory soil mechanics and foundations: geotechnical engineering (4th edn). MacMillan, New York

    Google Scholar 

  • Tezaghi K (1943) Theoretical soil mechanics. Wiley, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali El-Naqa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Naqa, A. A comparative review in regards to estimating bearing capacity in jointed rock masses in northeast Jordan. Bull Eng Geol Environ 63, 233–245 (2004). https://doi.org/10.1007/s10064-004-0235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-004-0235-8

Keywords

Mots-clefs

Navigation