Skip to main content
Log in

EPITRANS: A database that integrates epigenome and transcriptome data

  • Research Article
  • Published:
Molecules and Cells

Abstract

Epigenetic modifications affect gene expression and thereby govern a wide range of biological processes such as differentiation, development and tumorigenesis. Recent initiatives to define genome-wide DNA methylation and histone modification profiles by microarray and sequencing methods have led to the construction of databases. These databases are repositories for international epigenetic consortiums or provide mining results from PubMed, but do not integrate the epigenetic information with gene expression changes. In order to overcome this limitation, we constructed EPITRANS, a novel database that visualizes the relationships between gene expression and epigenetic modifications. EPITRANS uses combined analysis of epigenetic modification and gene expression to search for cell function-related epigenetic and transcriptomic alterations (Freely available on the web at http://epitrans.org).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bird, A. (2007). Perceptions of epigenetics. Nature 447, 396–398.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick, L.H. (2012). The NIH roadmap epigenomics program data resource. Epigenomics 4, 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Consortium, T.E.P. (2011). A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046.

    Article  Google Scholar 

  • Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J., Burger, M., Burton, J., Cox, T.V., Davies, R., Down, T.A., et al. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378–1385.

    Article  PubMed  CAS  Google Scholar 

  • Fang, Y.C., Lai, P.T., Dai, H.J., and Hsu, W.L. (2011). MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature. BMC Bioinformatics 12, 471.

    Article  PubMed  Google Scholar 

  • Fingerman, I.M., McDaniel, L., Zhang, X., Ratzat, W., Hassan, T., Jiang, Z., Cohen, R.F., and Schuler, G.D. (2011). NCBI Epigenomics: a new public resource for exploring epigenomic data sets. Nucleic Acids Res. 39, D908–912.

    Article  PubMed  CAS  Google Scholar 

  • Gendler, K., Paulsen, T., and Napoli, C. (2008). ChromDB: the chromatin database. Nucleic Acids Res.36, D298–302.

    Article  CAS  Google Scholar 

  • Grunau, C., Renault, E., Rosenthal, A., and Roizes, G. (2001). MethDB—a public database for DNA methylation data. Nucleic Acids Res. 29, 270–274.

    Article  PubMed  CAS  Google Scholar 

  • He, X., Chang, S., Zhang, J., Zhao, Q., Xiang, H., Kusonmano, K., Yang, L., Sun, Z.S., Yang, H., and Wang, J. (2008). Methy-Cancer: the database of human DNA methylation and cancer. Nucleic Acids Res. 36, D836–841.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, Y., Shen, L., and Issa, J.P. (2003). Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol. Cell Biol. 23, 206–215.

    Article  PubMed  CAS  Google Scholar 

  • Krivtsov, A.V., Feng, Z., Lemieux, M.E., Faber, J., Vempati, S., Sinha, A.U., Xia, X., Jesneck, J., Bracken, A.P., Silverman, L.B., et al. (2008). H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14, 355–368

    Article  PubMed  CAS  Google Scholar 

  • Lv, J., Liu, H., Su, J., Wu, X., Li, B., Xiao, X., Wang, F., Wu, Q., and Zhang, Y. (2012). DiseaseMeth: a human disease methylation database. Nucleic Acids Res. 40, D1030–1035.

    Article  PubMed  CAS  Google Scholar 

  • Meng, C.F., Zhu, X.J., Peng, G., and Dai, D.Q. (2007). Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J. Gastroenterol. 13, 6166–6171.

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Ongenaert, M., Van Neste, L., De Meyer, T., Menschaert, G., Bekaert, S., and Van Criekinge, W. (2008). PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res. 36, D842–846.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, G.K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3.

    PubMed  Google Scholar 

  • Sullivan, S., Sink, D.W., Trout, K.L., Makalowska, I., Taylor, P.M., Baxevanis, A.D., and Landsman, D. (2002). The histone database. Nucleic Acids Res. 30, 341–342.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Y., Chanrion, B., O’Donnell, A.H., Milekic, M., Costa, R., Ge, Y., and Haghighi, F.G. (2012). MethylomeDB: a database of DNA methylation profiles of the brain. Nucleic Acids Res. 40, D1245–1249.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Lv, J., Liu, H., Zhu, J., Su, J., Wu, Q., Qi, Y., Wang, F., and Li, X. (2010). HHMD: the human histone modification database. Nucleic Acids Res. 38, D149–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Seek Lee.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Cho, S.Y., Chai, J.C., Park, S.J. et al. EPITRANS: A database that integrates epigenome and transcriptome data. Mol Cells 36, 472–475 (2013). https://doi.org/10.1007/s10059-013-0249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0249-9

Keywords

Navigation