Skip to main content

Introduction to Data Types in Epigenomics

  • Chapter
Computational and Statistical Epigenomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 7))

Abstract

The epigenome is the collection of all epigenetic modifications occurring on a genome. To properly generate, analyze, and understand epigenomic data has become increasingly important in basic and applied research, because epigenomic modifications have been broadly associated with differentiation, development, and disease processes, thereby also constituting attractive drug targets. In this chapter, we introduce the reader to the different aspects of epigenomics (e.g., DNA methylation and histone marks, among others), by briefly reviewing the most relevant underlying biological concepts and by describing the different experimental protocols and the analysis of the associated data types. Furthermore, for each type of epigenetic modification we describe the most relevant analysis pipelines, data repositories, and other resources. We conclude that any epigenomic investigation needs to carefully align the selection of the experimental protocols with the subsequent bioinformatics analysis and vice versa, as the effect sizes can be small and thereby escape detection if an integrative design is not well considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey A, Shendure J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res. 2012;22(6):1139–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akalin A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):R87.

    PubMed Central  PubMed  Google Scholar 

  • Anderson JD, Widom J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol. 2000;296(4):979–87.

    CAS  PubMed  Google Scholar 

  • Aran D, Hellman A. DNA methylation of transcriptional enhancers and cancer predisposition. Cell. 2013;154(1):11–3.

    CAS  PubMed  Google Scholar 

  • Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 2013;14(3):R21.

    PubMed Central  PubMed  Google Scholar 

  • Aryee MJ, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics (Oxford, Engl). 2014;30(10):1363–9.

    CAS  Google Scholar 

  • Assenov Y, et al. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11:1138–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bailey T, et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 2013;9(11):e1003326.

    PubMed Central  PubMed  Google Scholar 

  • Bailey TL, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8.

    Google Scholar 

  • Barrès R, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.

    PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37. doi:10.1016/j.cell.2007.05.009.

  • Becker PB, Workman JL. Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol. 2013;5(9). pii: a017905.

    Google Scholar 

  • Bell JT, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 2011;12(1):R10.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benoukraf T, et al. CoCAS: a ChIP-on-chip analysis suite. Bioinformatics (Oxford, Engl). 2009;25(7):954–5.

    CAS  Google Scholar 

  • Bibikova M, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.

    CAS  PubMed  Google Scholar 

  • Bjornsson HT, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299(24):2877–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blat Y, Kleckner N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell. 1999;98(2):249–59.

    CAS  PubMed  Google Scholar 

  • Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012;13(10):705–19.

    CAS  PubMed  Google Scholar 

  • Bock C, et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol. 2010;28(10):1106–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butcher LM, Beck S. Probe Lasso: A novel method to rope in differentially methylated regions with 450 K DNA methylation data. Methods. 2015;72:21–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why? Mol Cell. 2013;49(5):825–37.

    CAS  PubMed  Google Scholar 

  • Carroll T, et al. tracktables: build IGV tracks and HTML reports. R package version 1.0.0; 2014a.

    Google Scholar 

  • Carroll TS, et al. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front Genet. 2014b;5:75.

    Google Scholar 

  • CLCbio, CLC shape-based peak caller. White paper. 2014. http://www.clcbio.com/files/whitepapers/whitepaper-chip-seq-analysis.pdf.

  • Consortium, T.E.P. et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;488(7414):57–74.

    Google Scholar 

  • Davis S, et al. methylumi: Handle Illumina methylation data. R package version 2.12.0; 2014.

    Google Scholar 

  • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dedeurwaerder S, et al. Evaluation of the Infinium Methylation 450 K technology. Epigenomics. 2011;3(6):771–84.

    CAS  PubMed  Google Scholar 

  • Dedeurwaerder S, et al. A comprehensive overview of Infinium HumanMethylation450 data processing. Brief Bioinform. 2014;15:929–41.

    PubMed Central  PubMed  Google Scholar 

  • Diaz A, Nellore A, Song JS. CHANCE: comprehensive software for quality control and validation of ChIP-seq data. Genome Biol. 2012;13(10):R98.

    PubMed Central  PubMed  Google Scholar 

  • Dong X, et al. Modeling gene expression using chromatin features in various cellular contexts. Genome Biol. 2012;13(9):R53.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Down TA, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Droit A, et al. rGADEM: de novo motif discovery. R package version 2.14.0; 2014.

    Google Scholar 

  • Drong AW, et al. The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS One. 2013;8(2):e55923.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Du P, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010;11:587.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eichler EE, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium, et al. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Google Scholar 

  • Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010;28(8):817–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ernst J, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fei J, Ha T. Watching DNA breath one molecule at a time. Proc Natl Acad Sci U S A. 2013;110(43):17173–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2011;13(2):97–109.

    Google Scholar 

  • Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40.

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Irizarry RA. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A. 2010;107 Suppl 1:1757–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feinberg AP, et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med. 2010;2(49):49ra67.

    PubMed Central  PubMed  Google Scholar 

  • Flensburg C, et al. A comparison of control samples for ChIP-seq of histone modifications. Front Genet. 2014;5:329.

    PubMed Central  PubMed  Google Scholar 

  • Fortin J-P, et al. Functional normalization of 450 k methylation array data improves replication in large cancer studies. Genome Biol. 2014;15(11):503.

    PubMed Central  PubMed  Google Scholar 

  • Fraga MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fyodorov DV, Kadonaga JT. The many faces of chromatin remodeling: SWItching beyond transcription. Cell. 2001;106(5):523–5.

    CAS  PubMed  Google Scholar 

  • Gagnon-Bartsch JA, Speed TP. Using control genes to correct for unwanted variation in microarray data. Biostatistics. 2012;13(3):539–52.

    PubMed Central  PubMed  Google Scholar 

  • Guo H, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–10.

    CAS  PubMed  Google Scholar 

  • Hannum G, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13(10):R83.

    PubMed Central  PubMed  Google Scholar 

  • Harper KN, Peters BA, Gamble MV. Batch effects and pathway analysis: two potential perils in cancer studies involving DNA methylation array analysis. Cancer Epidemiol Biomarkers Prev. 2013;22(6):1052–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harris RA, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010;28(10):1097–105.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hebestreit K, Dugas M, Klein H-U. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics (Oxford, Engl). 2013;29(13):1647–53.

    CAS  Google Scholar 

  • Heinz S, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henikoff S, Smith MM. Histone variants and epigenetics. Cold Spring Harb Perspect Biol. 2015;7(1):a019364.

    Google Scholar 

  • Ho JWK, et al. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics. 2011;12:134.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffman MM, et al. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 2013;41(2):827–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science (New York, NY). 1975;187(4173):226–32.

    CAS  Google Scholar 

  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

    PubMed Central  PubMed  Google Scholar 

  • Horvath S, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A. 2014;111(43):15538–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Houseman EA, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

    PubMed Central  PubMed  Google Scholar 

  • Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics (Oxford, Engl). 2014;30(10):1431–9.

    CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    PubMed Central  Google Scholar 

  • Huebert DJ, et al. Genome-wide analysis of histone modifications by ChIP-on-chip. Methods. 2006;40(4):365–9.

    CAS  PubMed  Google Scholar 

  • Illingworth RS, Bird AP. CpG islands–‘a rough guide’. FEBS Lett. 2009;583(11):1713–20.

    CAS  PubMed  Google Scholar 

  • Irizarry RA, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

    PubMed  Google Scholar 

  • Irizarry RA, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanov M, et al. In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes. Nucleic Acids Res. 2013;41(6):e72.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31.

    PubMed Central  PubMed  Google Scholar 

  • Jaffe AE, Feinberg AP, et al. Significance analysis and statistical dissection of variably methylated regions. Biostatistics. 2012a;13(1):166–78.

    PubMed Central  PubMed  Google Scholar 

  • Jaffe AE, Murakami P, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol. 2012b;41(1):200–9.

    PubMed Central  PubMed  Google Scholar 

  • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2006;8(1):118–27.

    PubMed  Google Scholar 

  • Johnson DS, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science (New York, NY). 2007;316(5830):1497–502.

    CAS  Google Scholar 

  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    CAS  PubMed  Google Scholar 

  • Karlic R, et al. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A. 2010;107(7):2926–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karolchik D, et al. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 2014;42(Database issue):D764–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science (New York, NY). 1974;184(4139):868–71.

    CAS  Google Scholar 

  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    CAS  PubMed  Google Scholar 

  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics (Oxford, Engl). 2011;27(11):1571–2.

    CAS  Google Scholar 

  • Krueger F, et al. DNA methylome analysis using short bisulfite sequencing data. Nat Methods. 2012;9(2):145–51.

    CAS  PubMed  Google Scholar 

  • Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet. 2010;11(3):191–203.

    CAS  PubMed  Google Scholar 

  • Landt SG, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KWK, Pausova Z. Cigarette smoking and DNA methylation. Front Genet. 2013;4:132.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee E-J, et al. Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Res. 2011;39(19):e127.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3(9):1724–35.

    CAS  PubMed  Google Scholar 

  • Leek JT, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.

    CAS  PubMed  Google Scholar 

  • Li N, et al. Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods. 2010;52(3):203–12.

    PubMed  Google Scholar 

  • Li Q, et al. Measuring reproducibility of high-throughput experiments. Ann Appl Stat. 2011;5(3):1752–79.

    Google Scholar 

  • Liang K, KeleÅŸ S. Normalization of ChIP-seq data with control. BMC Bioinformatics. 2012;13:199.

    PubMed Central  PubMed  Google Scholar 

  • Lim U, Song M-A. Dietary and lifestyle factors of DNA methylation. In: Methods in molecular biology. Methods in molecular biology. Totowa: Humana Press; 2012. p. 359–76. Available at: http://link.springer.com/10.1007/978-1-61779-612-8_23.

  • Lindholm ME, et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9(12):1557–69.

    PubMed  Google Scholar 

  • Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 2009;19(6):959–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lister R, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lister R, et al. Global epigenomic reconfiguration during mammalian brain development. Science (New York, NY). 2013;341(6146):1237905.

    Google Scholar 

  • Liu Y, et al. Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):R61.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31(2):142–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maksimovic J, Gordon L, Oshlack A. SWAN: subset quantile within-array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44.

    PubMed Central  PubMed  Google Scholar 

  • Marabita F, et al. An evaluation of analysis pipelines for DNA methylation profiling using the illumina HumanMethylation450 BeadChip platform. Epigenetics. 2013;8(3):333–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matys V, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34(Database issue):D108–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maunakea AK, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maze I, et al. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet. 2014;15(4):259–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  • McLean CY, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501. pp.nbt.1630–9.

    CAS  PubMed  Google Scholar 

  • Meissner A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miura F, Ito T. Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. DNA Res. 2015;22:13–8.

    PubMed Central  PubMed  Google Scholar 

  • Miura F, et al. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 2012;40(17):e136.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morris TJ, Beck S. Analysis pipelines and packages for Infinium Human Methylation 450 BeadChip (450 k) data. Methods. 2015;72:3–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Negre N, et al. Mapping the distribution of chromatin proteins by ChIP on chip. Methods Enzymol. 2006;410:316–41.

    CAS  PubMed  Google Scholar 

  • Park PJ. ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park Y, et al. methylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics (Oxford, Engl). 2014;30:2414–22.

    CAS  Google Scholar 

  • Peng W, Zhao K. An integrated strategy for identification of both sharp and broad peaks from next-generation sequencing data. Genome Biol. 2011;12(7):120.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peters T, Buckley M. DMRcate: illumina 450 K methylation array spatial analysis methods. R package version 1.2.0; 2014.

    Google Scholar 

  • Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465(7299):721–7.

    CAS  PubMed  Google Scholar 

  • Pidsley R, et al. A data-driven approach to preprocessing illumina 450 K methylation array data. BMC Genomics. 2013;14(1):293.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Portales-Casamar E, et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 2010;38(Database issue):D105–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reinius LE, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility A. H. Ting, ed. PLoS One. 2012;7(7):e41361.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ren B, et al. Genome-wide location and function of DNA binding proteins. Science (New York, NY). 2000;290(5500):2306–9.

    CAS  Google Scholar 

  • Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.

    CAS  PubMed  Google Scholar 

  • Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155(1):39–55.

    CAS  PubMed  Google Scholar 

  • Robinson JT, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rönn T, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue J. M. Greally, ed. PLoS Genet. 2013;9(6):e1003572.

    PubMed Central  PubMed  Google Scholar 

  • Rönnerblad M, et al. Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. Blood. 2014;123(17):e79–89.

    PubMed  Google Scholar 

  • Sandoval J, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6(6):692–702.

    CAS  PubMed  Google Scholar 

  • Schalkwyk LC, et al. wateRmelon: Illumina 450 methylation array normalization and metrics. R package version 1.5.1; 2013.

    Google Scholar 

  • Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010;38(2):391–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharov AA, Ko MSH. Exhaustive search for over-represented DNA sequence motifs with CisFinder. DNA Res. 2009;16(5):261–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi J, et al. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue. Nat Commun. 2014;5:3365.

    PubMed Central  PubMed  Google Scholar 

  • Smallwood SA, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in 1053 microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1):1–25.

    Google Scholar 

  • Sofer T, et al. A-clustering: a novel method for the detection of co-regulated methylation regions, and regions associated with exposure. Bioinformatics. 2013;29:2884–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Solomon MJ, Larsen PL, Varshavsky A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 1988;53(6):937–47.

    CAS  PubMed  Google Scholar 

  • Stadler MB, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature. 2011;480(7378):490–5.

    CAS  PubMed  Google Scholar 

  • Sun Z, et al. Batch effect correction for genome-wide methylation data with Illumina Infinium platform. BMC Med Genomics. 2011;4(1):84.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teschendorff AE, Widschwendter M. Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions. Bioinformatics (Oxford, Engl). 2012;28(11):1487–94.

    CAS  Google Scholar 

  • Teschendorff AE, Zhuang J, Widschwendter M. Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics (Oxford, Engl). 2011;27(11):1496–505.

    CAS  Google Scholar 

  • Teschendorff AE, Marabita F, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics (Oxford, Engl). 2013a;29(2):189–96.

    CAS  Google Scholar 

  • Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet. 2013b;22(R1):R7–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.

    CAS  PubMed  Google Scholar 

  • Thurman RE, et al. Identification of higher-order functional domains in the human ENCODE regions. Genome Res. 2007;17(6):917–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tollefsbol T, editor. Handbook of epigenetics. San Diego: Academic; 2011.

    Google Scholar 

  • Touleimat N, Tost J. Complete pipeline for Infinium ®Human Methylation 450 K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41.

    CAS  PubMed  Google Scholar 

  • Tran NTL, Huang C-H. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data. Biol Direct. 2014;9:4.

    PubMed Central  PubMed  Google Scholar 

  • Tran H, et al. Objective and comprehensive evaluation of bisulfite short read mapping tools. Adv Bioinformatics. 2014;2014:472045.

    PubMed Central  PubMed  Google Scholar 

  • Wang ZB, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40:897–903.

    Google Scholar 

  • Wei G, Morris TJ, et al. ChAMP: 450 k chip analysis methylation pipeline. Bioinformatics. 2014;30:428–30. http://www.ncbi.nlm.nih.gov/pubmed/18552846.

    Google Scholar 

  • Welch RP, et al. ChIP-Enrich: gene set enrichment testing for ChIP-seq data. Nucleic Acids Res. 2014;42(13):e105.

    CAS  PubMed  Google Scholar 

  • Wiench M, et al. DNA methylation status predicts cell type-specific enhancer activity. EMBO J. 2011;30(15):3028–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilhelm-Benartzi CS, et al. Review of processing and analysis methods for DNA methylation array data. Br J Cancer. 2013;109(6):1394–402.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zang C, et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics (Oxford, Engl). 2009;25(15):1952–8.

    CAS  Google Scholar 

  • Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

    PubMed Central  PubMed  Google Scholar 

  • Zhuang J, Widschwendter M, Teschendorff AE. A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform. BMC Bioinformatics. 2012;13(1):59.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ziller MJ, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477–81.

    CAS  PubMed  Google Scholar 

  • Zou J, et al. Epigenome-wide association studies without the need for cell-type composition. Nat Methods. 2014;11(3):309–11.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Marabita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marabita, F., Tegnér, J., Gomez-Cabrero, D. (2015). Introduction to Data Types in Epigenomics. In: Teschendorff, A. (eds) Computational and Statistical Epigenomics. Translational Bioinformatics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9927-0_1

Download citation

Publish with us

Policies and ethics