Skip to main content
Log in

Involvement of CD137 ligand signaling in neural stem cell death

  • Published:
Molecules and Cells

Abstract

CD137 is a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Interaction of CD137 with its ligand (CD137L) affects the apoptosis, proliferation and differentiation of immune cells. Interestingly, the CD137 receptor/ligand system involves the bi-directional transduction of signals. The expression of CD137 and its ligand is not restricted to immune organs, but can also be detected in a wide variety of tissues such as the brain, kidney, lung and heart. However, its role in brain is largely unknown. This study was performed to determine the role of CD137L reverse signaling in the apoptosis of neural stem cells. We identified the expression of CD137 and its ligand in C17.2 neural stem cells derived from mouse embryonic cerebellum. We found that the activation of CD137L reverse signaling by CD137 resulted in a decrease in cell adhesion to the fibronectin-coated culture basement, thus causing detachment-induced cell death. Furthermore, we showed that the cell death induced by CD137 was completely ameliorated by integrin activators and caspase inhibitors. Therefore we suggest that CD137L reverse signaling exerts a pro-apoptotic effect by suppressing integrin-mediated survival signals in neural stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida, E.A., Ilic, D., Han, Q., Hauck, C.R., Jin, F., Kawakatsu, H., Schlaepfer, D.D., and Damsky, C.H. (2000). Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase. J. Cell Biol. 149, 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau, N.J., and Jones, P.L. (1999). Extracellular matrix and integrin signalling: the shape of things to come. Biochem. J. 339(Pt 3), 481–488.

    Article  PubMed  CAS  Google Scholar 

  • Bozzo, C., Sabbatini, M., Tiberio, R., Piffanelli, V., Santoro, C., and Cannas, M. (2006). Activation of caspase-8 triggers anoikis in human neuroblastoma cells. Neurosci. Res. 56, 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Campos, L.S. (2005). Beta1 integrins and neural stem cells: making sense of the extracellular environment. Bioessays 27, 698–707.

    Article  PubMed  CAS  Google Scholar 

  • Ceccatelli, S., Tamm, C., Sleeper, E., and Orrenius, S. (2004). Neural stem cells and cell death. Toxicol. Lett. 149, 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Cory, S., and Adams, J.M. (2005). Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell 8, 5–6.

    Article  PubMed  CAS  Google Scholar 

  • Croft, M. (2003). Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, S.M., and Screaton, R.A. (2001). Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Grossmann, J. (2002). Molecular mechanisms of “detachmentinduced apoptosis—Anoikis”. Apoptosis 7, 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Gullo, C., Koh, L.K., Pang, W.L., Ho, K.T., Tan, S.H., and Schwarz, H. (2010). Inhibition of proliferation and induction of apoptosis in multiple myeloma cell lines by CD137 ligand signaling. PLoS One 5, e10845.

    Article  PubMed  Google Scholar 

  • Haupt, S., Berger, M., Goldberg, Z., and Haupt, Y. (2003). Apoptosis — the p53 network. J. Cell. Sci. 116, 4077–4085.

    Article  PubMed  CAS  Google Scholar 

  • Hu, P., and Luo, B.H. (2012). Integrin bi-directional signaling across the plasma membrane. J. Cell. Physiol. 228, 306–312.

    Article  Google Scholar 

  • Ilic, D., Almeida, E.A., Schlaepfer, D.D., Dazin, P., Aizawa, S., and Damsky, C.H. (1998). Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J. Cell Biol. 143, 547–560.

    Article  PubMed  CAS  Google Scholar 

  • Janes, S.M., and Watt, F.M. (2004). Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J. Cell Biol. 166, 419–431.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, D., Chen, Y., and Schwarz, H. (2008). CD137 induces proliferation of murine hematopoietic progenitor cells and differentiation to macrophages. J. Immunol. 181, 3923–3932.

    PubMed  CAS  Google Scholar 

  • Jin, S., and Levine, A.J. (2001). The p53 functional circuit. J. Cell. Sci. 114, 4139–4140.

    PubMed  CAS  Google Scholar 

  • Kim, M.S., Hur, M.K., Son, Y.J., Park, J.I., Chun, S.Y., D’Elia, A.V., Damante, G., Cho, S., Kim, K., and Lee, B.J. (2002). Regulation of pituitary adenylate cyclase-activating polypeptide gene transcription by TTF-1, a homeodomain-containing transcription factor. J. Biol. Chem. 277, 36863–36871.

    Article  PubMed  CAS  Google Scholar 

  • Kokovay, E., Shen, Q., and Temple, S. (2008). The incredible elastic brain: how neural stem cells expand our minds. Neuron 60, 420–429.

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein, A., and Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, B.S., Kim, G.S., Prystowsky, M.B., Lancki, D.W., Sabath, D.E., Pan, J.L., and Weissman, S.M. (1987). Isolation and initial characterization of multiple species of T-lymphocyte subset cDNA clones. Proc. Natl. Acad. Sci. USA 84, 2896–2900.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, B., Moon, C.H., Kang, S., Seo, S.K., and Kwon, B.S. (2000). 4-1BB: still in the midst of darkness. Mol. Cells 10, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Langstein, J., Michel, J., Fritsche, J., Kreutz, M., Andreesen, R., and Schwarz, H. (1998). CD137 (ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J. Immunol. 160, 2488–2494.

    PubMed  CAS  Google Scholar 

  • Massirer, K.B., Carromeu, C., Griesi-Oliveira, K., and Muotri, A.R. (2011). Maintenance and differentiation of neural stem cells. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Melero, I., Shuford, W.W., Newby, S.A., Aruffo, A., Ledbetter, J.A., Hellstrom, K.E., Mittler, R.S., and Chen, L. (1997). Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat. Med. 3, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Molofsky, A.V., Pardal, R., and Morrison, S.J. (2004). Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol. 16, 700–707.

    Article  PubMed  CAS  Google Scholar 

  • Mould, A.P., Akiyama, S.K., and Humphries, M.J. (1995). Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J. Biol. Chem. 270, 26270–26277.

    Article  PubMed  CAS  Google Scholar 

  • Ni, H., Li, A., Simonsen, N., and Wilkins, J.A. (1998). Integrin activation by dithiothreitol or Mn2+ induces a ligand-occupied conformation and exposure of a novel NH2-terminal regulatory site on the beta1 integrin chain. J. Biol. Chem. 273, 7981–7987.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D.W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.J., Kim, H.J., Lee, J.S., Cho, H.R., and Kwon, B. (2012). Reverse signaling through the co-stimulatory ligand, CD137L, as a critical mediator of sterile inflammation. Mol. Cells 33, 533–537.

    Article  PubMed  CAS  Google Scholar 

  • Pollok, K.E., Kim, Y.J., Zhou, Z., Hurtado, J., Kim, K.K., Pickard, R.T., and Kwon, B.S. (1993). Inducible T cell antigen 4-1BB. Analysis of expression and function. J. Immunol. 150, 771–781.

    PubMed  CAS  Google Scholar 

  • Reali, C., Curto, M., Sogos, V., Scintu, F., Pauly, S., Schwarz, H., and Gremo, F. (2003). Expression of CD137 and its ligand in human neurons, astrocytes, and microglia: modulation by FGF-2. J. Neurosci. Res. 74, 67–73

    Article  PubMed  CAS  Google Scholar 

  • Saito, K., Ohara, N., Hotokezaka, H., Fukumoto, S., Yuasa, K., Naito, M., Fujiwara, T., and Nakayama, K. (2004). Infection-induced up-regulation of the costimulatory molecule 4-1BB in osteoblastic cells and its inhibitory effect on M-CSF/RANKL-induced in vitro osteoclastogenesis. J. Biol. Chem. 279, 13555–13563.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, H., Valbracht, J., Tuckwell, J., von Kempis, J., and Lotz, M. (1995). ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood 85, 1043–1052.

    PubMed  CAS  Google Scholar 

  • Senthilkumar, R., and Lee, H.W. (2009). CD137L- and RANKL-mediated reverse signals inhibit osteoclastogenesis and T lymphocyte proliferation. Immunobiology 214, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Shao, Z., and Schwarz, H. (2011). CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J. Leukoc. Biol. 89, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Shuford, W.W., Klussman, K., Tritchler, D.D., Loo, D.T., Chalupny, J., Siadak, A.W., Brown, T.J., Emswiler, J., Raecho, H., Larsen, C.P., et al. (1997). 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med. 186, 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E.Y., Deitcher, D.L., Walsh, C., Arnold-Aldea, S., Hartwieg, E.A., and Cepko, C.L. (1992). Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51.

    Article  PubMed  CAS  Google Scholar 

  • Stuiver, I., and O’Toole, T.E. (1995). Regulation of integrin function and cellular adhesion. Stem Cells 13, 250–262.

    Article  PubMed  CAS  Google Scholar 

  • Stupack, D.G., and Cheresh, D.A. (2002). Get a ligand, get a life: integrins, signaling and cell survival. J. Cell Sci. 115, 3729–3738.

    Article  PubMed  CAS  Google Scholar 

  • Tate, M.C., Shear, D.A., Hoffman, S.W., Stein, D.G., Archer, D.R., and LaPlaca, M.C. (2002). Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant. 11, 283–295.

    PubMed  Google Scholar 

  • Thorburn, A. (2004). Death receptor-induced cell killing. Cell. Signal. 16, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C., Keivens, V.M., O’Toole, T.E., McDonald, J.A., and Ginsberg, M.H. (1995). Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83, 715–724.

    Article  PubMed  CAS  Google Scholar 

  • Xia, H., Nho, R.S., Kahm, J., Kleidon, J., and Henke, C.A. (2004). Focal adhesion kinase is upstream of phosphatidylinositol — kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J. Biol. Chem. 279, 33024–33034.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, Y.A., Martinez Gomez, J.M., Croxford, J.L., Gasser, S., Ling, E.A., and Schwarz, H. (2012). CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species. J. Neuroinflammation 9, 173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Ju Lee.

About this article

Cite this article

Yun, C.H., Lee, H.M., Lee, S.C. et al. Involvement of CD137 ligand signaling in neural stem cell death. Mol Cells 36, 245–251 (2013). https://doi.org/10.1007/s10059-013-0137-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0137-3

Keywords

Navigation