Skip to main content
Log in

Targeting the autophagy pathway using ectopic expression of Beclin 1 in combination with rapamycin in drug-resistant v-Ha-ras-transformed NIH 3T3 cells

  • Published:
Molecules and Cells

Abstract

The effectiveness of an apoptosis-targeting therapy may be limited in tumor cells with defects in apoptosis. Recently, considerable attention in the field of cancer therapy has been focused on the mammalian rapamycin target (mTOR), inhibition of which results in autophagic cell death. In our study using multidrug-resistant v-Ha-rastransformed NIH3T3 (Ras-NIH 3T3/Mdr) cells, we demonstrated that rapamycin-induced cell death may result from 2 different mechanisms. At high rapamycin concentrations (≥ 100 nM), cell death may occur via an autophagy-dependent pathway, whereas at lower concentrations (≤ 10 nM), cell death may occur after G1-phase cell cycle arrest. This effect was accompanied by upregulation of p21Cip1 and p27Kip1 expression via an autophagy-independent pathway. We also tested whether inhibition of mTOR with low concentrations of rapamycin and ectopic Beclin-1 expression would further sensitize multidrug resistance (MDR)-positive cancer cells by upregulating autophagy. Rapamycin at low concentrations might be insufficient to initiate autophagosome formation in autophagy but Beclin-1 overexpression triggered additional processes downstream of mTOR during G1 cell cycle arrest by rapamycin. Our findings suggest that these combination strategies targeting autophagic cell death may yield significant benefits for cancer patients, because lowering rapamycin concentration for cancer treatment minimizes its side effects in patients undergoing chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arceci, R.J., Stieglitz, K., and Bierer, B.E. (1992). Immunosuppressants FK506 and rapamycin function as reversal agents of the multidrug resistance phenotype. Blood 80, 1528–1536.

    PubMed  CAS  Google Scholar 

  • Cao, Y., and Klionsky, D.J. (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839–849

    Article  PubMed  CAS  Google Scholar 

  • Dancey, J.E. (2005). Inhibitors of the mammalian target of rapamycin. Expert Opin. Investig. Drugs 14, 313–328.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, F., Legrand, A., and Pessayre, D. (2007). Beclin1 mRNA strongly correlates with Bcl-XL mRNA expression in human hepatocellular carcinoma. Cancer Invest. 25, 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Faivre, S., Kroemer, G., and Raymond, E. (2006). Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 5, 671–688.

    Article  PubMed  CAS  Google Scholar 

  • Franken, N.A., Rodermond, H.M., Stap, J., Haveman, J., and van Bree, C. (2006). Clongenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, M.M. (2002). Mechanisms of cancer drug resistanace. Annu. Rev. Med. 53, 615–627.

    Article  PubMed  CAS  Google Scholar 

  • Guertin, D.A., and Sabatini, D.M. (2005). An expanding role for mTOR in cancer. Trends Mol. Med. 11, 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Hamacher-Brady, A., Brady, N.R., and Gottlieb, R.A. (2006). Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J. Biol. Chem. 281, 29776–29787.

    Article  PubMed  CAS  Google Scholar 

  • Hartford, C.M., and Ratain, M.J. (2007). Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin. Pharmacol. Ther. 82, 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Kawamata, S., Sakaida, H., Hori, T., Maeda, M., and Uchiyama, T. (1998). The upregulation of p27Kip1 by rapamycin results in G1 arrest in exponentially growing T-cell lines. Blood 91, 561–569.

    PubMed  CAS  Google Scholar 

  • Kim, K.W., Hwang, M., Moretti, L., Jaboin, J.J., Cha, Y.I., and Lu, B. (2008). Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy 4, 659–668.

    PubMed  CAS  Google Scholar 

  • King, M.A., Hands, S., Hafiz, F., Mizushima, N., Tolsovsky, A.M., and Wyttenbach, A. (2008). Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol. Pharmacol. 73, 1052–1063.

    Article  PubMed  CAS  Google Scholar 

  • Komata, T., Kanzawa, T., Takeuchi, H., Germano, I.M., Schreiber, M., Kondo, Y., and Kondo, S. (2003). Antitumour effect of cyclindependent kinase inhibitors (p16(INK4A), p18(INK4C), p19(INK4D), p21(WAF1/CIP1) and p27(KIP1)) on malignant glioma cells. Br. J. Cancer 88, 1277–1280.

    Article  PubMed  CAS  Google Scholar 

  • Koneri, K., Goi, T., and Hirono, Y. (2007). Beclin1 gene inhibits tumor growth in colon cancer cell lines. Anticancer Res. 27, 1453–1457.

    PubMed  CAS  Google Scholar 

  • Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M., Ahn, J.-H., and Eum, K.-H. (2009). The differences in biological properties between parental and v-Ha-ras transformed NIH3T3 cells. Cancer Res. Treat. 41, 93–99.

    Article  PubMed  Google Scholar 

  • Marinov, M., Fischer, B., and Arcaro, A. (2007). Targeting mTOR signaling in lung cancer. Crit. Rev. Oncol. Hematol. 63, 172–182.

    Article  PubMed  Google Scholar 

  • Mashima, T., and Tsuruo, T. (2005). Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist. Updat. 8, 339–343.

    Article  PubMed  CAS  Google Scholar 

  • Mazzanti, R., Platini, F., Bottini, C., Fantappie, O., Solazzo, M., and Tessitore, L. (2009). Down-regulation of the HGF/MET autocrine loop induced by celecoxib and mediated by P-gp in MDRpositive human hepatocellular carcinoma cell line. Biochem. Pharmacol. 78, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Meric-Bernstam, F., and Gonzalez-Angulo, A.M. (2009). Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27, 2278–2287.

    Article  PubMed  CAS  Google Scholar 

  • Miracco, C., and Cosci, E. (2007). Protein and mRNA expression of autophagy gene Beclin1 in human brain tumours. Int. J. Oncol. 30, 429–436.

    PubMed  CAS  Google Scholar 

  • Moretti, L., Yang, E.S., Kim, K.W., and Lu, B. (2007). Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist. Updat. 10, 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Panwalkar, A., Verstovsek, S., and Giles, F.J. (2004). Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer 100, 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Pawarode, A., Shukla, S., Minderman, H., Fricke, S.M., Pinder, E.M., O’Loughlin, K.L., Ambudkar, S.V., and Baer, M.R. (2007). Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother. Pharmacol. 60, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Pop, I.V., Pop, L.M., Ghetie, M.A., and Vitetta, E.S. (2009). Targeting mammalian target of rapamycin to both downregulate and disable the P-glycoprotein pump in multidrug-resistant B-cell lymphoma cell lines. Leuk. Lymphoma 50, 1155–1162.

    Article  PubMed  CAS  Google Scholar 

  • Sir, D., and Ou, J.H. (2010). Autophagy in viral replication and pathogenesis. Mol. Cells 29, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Liu, J.H., Jin, L., Lin, S.M., Yang, Y., Sui, Y.X., and Shi, H. (2010). Over-expression of the Beclin1 gene upregulates chemosensitivity to anti-cancer drugs by enhancing therapy-induced apoptosis in cervix squamous carcinoma CaSki cells. Cancer Lett. 294, 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Ullman, E., Fan, Y., Stawowczyk, M., Chen, H.M., Yue, Z., and Zong, W.X. (2008). Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ. 15, 422–425.

    Article  PubMed  CAS  Google Scholar 

  • Weppler, S.A., Krause, M., Zyromska, A., Lambin, P., Baumann, M., and Wouters, B.G. (2007). Response of U87 glioma xenografts treated with concurrent rapamycin and fractionated radiotherapy: possible role for thrombosis. Radiother. Oncol. 82, 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.P., Calcagno, A.M., and Ambudkar, S.V. (2008). Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr. Mol. Pharmacol. 1, 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., and Simon, H.U. (2006). Calpainmediated cleavage of Arg5 switches autophagy to apoptosis. Nat. Cell Biol. 8, 1124–1132.

    Article  PubMed  CAS  Google Scholar 

  • Yue, Z., Jin, S., Yang, C., Levine, A.J., and Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA 100, 15077–15082.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lee.

About this article

Cite this article

Eum, KH., Lee, M. Targeting the autophagy pathway using ectopic expression of Beclin 1 in combination with rapamycin in drug-resistant v-Ha-ras-transformed NIH 3T3 cells. Mol Cells 31, 231–238 (2011). https://doi.org/10.1007/s10059-011-0034-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0034-6

Keywords

Navigation