Skip to main content
Log in

Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences

  • Published:
Molecules and Cells

Abstract

The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagesen, L., and Sanso, A.M. (2003) The phylogeny of the Alstroemeriaceae, based on morphology, rps 16 intron, and rbcL sequence data. Syst. Bot. 28, 47–69.

    Google Scholar 

  • Ackery, P.R. (1984) Systematic and faunistic studies on butterflies. In The Biology of Butterflies, R.I. Vane-Wright, and P.R. Ackery, eds. (London, United Kingdom: Academic Press), pp. 9–21.

    Google Scholar 

  • Ackery, P.R., de Jong, R., and Vane-Wright, R.I. (1999) The butterflies: Hedyloidea, Hesperioidea, and Papilionoidea. In Lepidoptera: Moths and Butterflies. 1. Evolution, systematics, and biogeography, Handbook of Zoology Vol. IV, Part 35, N.P. Kristensen, ed. (Berlin and New York: De Gruyter), pp. 264–300.

    Google Scholar 

  • Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Auto. Contr. 19, 716–723.

    Article  Google Scholar 

  • Brower, A.V.Z. (2000) Phylogenetic relationships among the Nymphalidae (Lepidoptera), inferred from partial sequences of the wingless gene. Proc. Biol. Sci. 267, 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  • Brock, J.P. (1971) A contribution towards an understanding of the morphology and phylogeny of the ditrysian Lepidoptera. J. Nat. Hist. 5, 29–102.

    Article  Google Scholar 

  • Brock, J.P. (1990) Origins and phylogeny of butterflies. In Butterflies of Europe 2, O. Kudrna, ed. (Wiesbaden, Germany: Aula Verlag), pp. 209–233.

    Google Scholar 

  • Campbell, D.L., Brower, A.V.Z., and Pierce, N.E. (2000) Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea). Mol. Biol. Evol. 17, 684–696.

    CAS  PubMed  Google Scholar 

  • Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic tool. Curr. Opin. Genet. Dev. 8, 668–674.

    Google Scholar 

  • Caterino, M.S., Cho, S., and Sperling, F.A.H. (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu. Rev. Entomol. 45, 1–54.

    Article  CAS  PubMed  Google Scholar 

  • Caterino, M.S., Reed, R.D., Kuo, M.M., and Sperling, F.A.H. (2001) A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Syst. Biol. 50, 106–127.

    Article  CAS  PubMed  Google Scholar 

  • Corbet, A.S., Pendlebury, H.M., and Eliot, J.N. (1992) The butterflies of the Malay Peninsula (Kuala Lumpur: Malayan Nature Society).

    Google Scholar 

  • de Jong, R., Vane-Wright, R.I., and Ackery, P.R. (1996) The higher classification of butterflies (Lepidoptera): problems and prospects. Entomol. Scand. 27, 65–101.

    Google Scholar 

  • Ehrlich, P.R. (1958) The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea). Kanas Univ. Sci. Bull. 39, 305–370.

    Google Scholar 

  • Ehrlich, P.R., and Ehrlich, A.H. (1967) The phenetic relationships of the butterflies. I. Adult taxonomy and the non-specificity hypothesis. Syst. Zool. 16, 301–317.

    Article  Google Scholar 

  • Eliot, J.N. (1973) The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bull. Br. Mus. Nat. Hist. Entomol. 28, 371–505.

    Google Scholar 

  • Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299.

    CAS  PubMed  Google Scholar 

  • Freitas, A.V.L., and Brown, K.S. (2004) Phylogeny of the Nymphalidae (Lepidoptera). Syst. Biol. 53, 363–383.

    Article  PubMed  Google Scholar 

  • Guindon, S., Lethiec, F., Duroux, P., and Gascuel, O. (2005) PHYML Online - a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33, W557–W559.

    Article  CAS  PubMed  Google Scholar 

  • Hajibabaei, M., Singer, G.A.C., and Hickey, D.A. (2006) Benchmarking DNA barcodes: an assessment using available primate sequences. Genome 49, 851–854.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, D.J. (1987) The higher classification of the Riodinidae (Lepidoptera). Ph.D. thesis, University of Texas, Austin.

    Google Scholar 

  • Hauser, C.L. (1993) The internal female genital organs in butterflies (Rhopalocera): comparative morphology and phylogenetic interpretation (Insecta, Lepidoptera). Zoologische Jahrbücher, Abteilung für Systematik 120, 389–439.

    Google Scholar 

  • Huelsenbeck, J.P., and Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Joo, H.Z., Kim, S.S., and Sohn, J.D. (2005) Butterflies of Korea. (Seoul, Korea: Kyo-Hak Publishing Co., Ltd), pp. 402–411.

    Google Scholar 

  • Jordan, K. (1898) Contributions to the morphology of Lepidoptera. Novit. Zool. 5, 374–415.

    Google Scholar 

  • Kandul, N.P., Lukhtanov, V.A., Dantchenko, A.V., Coleman, J.W.S., Sekercioglu, C.H., Haig, D., and Pierce, N.E. (2004) Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF-1α: Karyotype diversification and species radiation. Syst. Biol. 53, 278–298.

    Article  PubMed  Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066.

    Article  CAS  PubMed  Google Scholar 

  • Kim, I., Lee, E.M., Seol, K.Y., Yun, E.Y., Lee, Y.B., Hwang, J.S., and Jin, B.R. (2006) The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Mol. Biol. 15, 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.I., Baek, J.Y., Kim M.J., Jeong, H.C., Kim, K.G., Bae, C.H. Han, Y.S., Jin, B.R., and Kim, I. (2009) Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol. Cells 28, 347–363.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, N.P. (1976) Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). Zool. Syst. Evol. Res. 14, 25–33.

    Article  Google Scholar 

  • Lanave, C., Preparata, G., Saccone, C., and Serio, G. (1984) A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20, 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.P., and Danforth, B.N. (2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol. Phylogenet. Evol. 30, 686–702.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J.A., and Pashley, D.P. (1992) Molecular systematic analysis of butterfly family and some subfamily relationships (Lepidoptera: Papilionidea). Ann. Ent. Soc. Am. 85, 127–135.

    CAS  Google Scholar 

  • Massana, R., Castresana, J., Balagué, Guillou, L., Romari, Groisillier, A., Valentin, K., and Pedrós-Alió, C. (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl. Environ. Microbiol. 70, 3528–3534.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro, A., and Pierce, N.E. (2001) Molecular phylogeny of Bicyclus butterflies (Satyridae) using COI, COII and EF1α. Mol. Phylogenet. Evol. 18, 264–281.

    Article  CAS  PubMed  Google Scholar 

  • Nazari, V., Zakharov, E.V., and Sperling, F.A. (2007) Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Mol. Phylogenet. Evol. 42, 131–156.

    Article  CAS  PubMed  Google Scholar 

  • Niehuis, O., Yen, S.H., Naumann, C.M., and Misof, B. (2006) Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Mol. Phylogenet. Evol. 39, 812–829.

    Article  CAS  PubMed  Google Scholar 

  • Posada, D., and Crandal, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, R.K. (1982) How many butterfly species? News Lepid. Soc. 1982, 40–41.

    Google Scholar 

  • Robbins, R.K. (1988) Comparative morphology of the butterfly foreleg coxa and trochanter (Lepidoptera) and its systematic implications. P. Entomol. Soc. Wash. 90, 133–154.

    Google Scholar 

  • Savard, J., Tautz, D., Richards, S., Weinstock, G.M., Gibbs, R.A., Werren, J.H., Tettelin, H., and Lercher, M.J. (2006) Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res. 16, 1334–1338.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, J.B. (1938) The feeding mechanism of adult Lepidoptera. Smithson Misc. Coll. 97, 1–28.

    Google Scholar 

  • Scotland, R.W., Olmstead, R., and Bennett, J.R. (2003) Phylogeny reconstruction: the role of morphology. Syst. Biol. 52, 539–548.

    PubMed  Google Scholar 

  • Scott, J.A. (1985) The phylogeny of butterflies (Papilionoidea and Hesperioidea). J. Res. Lepid. 23, 241–281.

    Google Scholar 

  • Scott, J.A., Wright, D.M., and Kudrna, O. (1990) Butterfly phylogeny and fossils. Butterflies of Europe: Introduction to lepidopterology 2, 152–208.

    Google Scholar 

  • Smart, P. (1989) The illustrated encyclopedia of the butterfly world (New York, USA: Chartwell Books).

    Google Scholar 

  • Strimmer, K., and Rambaut, A. (2002) Inferring confidence sets of possibly misspecified gene trees. Proc. Biol. Sci. 269, 137–142.

    Article  PubMed  Google Scholar 

  • Swofford, D.L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and Other Methods) ver 4.0b10 (Sunderland, Massachusetts, USA: Sinauer Associates).

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software ver 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Wahlberg, N., Weingartner, E., and Nylin, S. (2003) Towards a better understanding of the higher systematic of Nymphalidae (Lepidoptera: Papilionidae). Mol. Phylogenet. Evol. 28, 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Wahlberg, N., Braby, M.F., Brower, A.V.Z., de Jong, R., Lee, M.-M., Nylin, S., Pierce, N.E., Sperling, F.A.H., Vila, R., Warren, A.D., et al. (2005a) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. Biol. Sci. 272, 1577–1586.

    Article  CAS  PubMed  Google Scholar 

  • Wahlberg, N., Brower, A.V.Z., and Nylin, S. (2005b) Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 86, 227–251.

    Article  Google Scholar 

  • Weller, S.J., Pashley, D.P., and Martin, J.A. (1996) Reassessment of butterfly family relationships using independent genes and morphology. Ann. Entomol. Soc. Am. 89, 184–192.

    Google Scholar 

  • Zakharov, E.V., Caterino, M.S., and Sperling, F.A.H. (2004) Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 53, 193–215.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iksoo Kim.

About this article

Cite this article

Kim, M.I., Wan, X., Kim, M.J. et al. Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences. Mol Cells 30, 409–425 (2010). https://doi.org/10.1007/s10059-010-0141-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0141-9

Keywords

Navigation