Skip to main content
Log in

A protein tyrosine phosphatase inhibitor, pervanadate, inhibits angiotensin II-Induced β-arrestin cleavage

  • Published:
Molecules and Cells

Abstract

β-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin AT1 receptor-bound β-arrestin 1 is cleaved after Phe388 upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced β-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of β-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of β-arrestin 1 induced conformational changes and the cleavage of β-arrestin 1 without angiotensin AT1 receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged β-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of β-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced β-arrestin cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azarian, S.M., King, A.J., Hallett, M.A., and Williams, D.S. (1995). Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation. J. Biol. Chem. 270, 24375–24384.

    Article  PubMed  CAS  Google Scholar 

  • Barak, L.S., Ferguson, S.S., Zhang, J., and Caron, M.G. (1997). A β-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol. Chem. 272, 27497–27500.

    Article  PubMed  CAS  Google Scholar 

  • Brautigan, D.L., and Pinault, F.M. (1993). Serine phosphorylation of protein tyrosine phosphatase (PTP1B) in HeLa cells in response to analogues of cAMP or diacylglycerol plus okadaic acid. Mol. Cell. Biochem. 127, 121–129.

    Article  PubMed  Google Scholar 

  • Eguchi, S., Dempsey, P.J., Frank, G.D., Motley, E.D., and Inagami, T. (2001). Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J. Biol. Chem. 276, 7957–7962.

    Article  PubMed  CAS  Google Scholar 

  • Garton, A.J., and Tonks, N.K. (1994). PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. EMBO J. 13, 3763–3771.

    PubMed  CAS  Google Scholar 

  • Han, M., Gurevich, V.V., Vishnivetskiy, S.A., Sigler, P.B., and Schubert, C. (2001). Crystal structure of β-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure (Camb) 9, 869–880.

    Article  CAS  Google Scholar 

  • Krupnick, J.G., Goodman, O.B., Jr., Keen, J.H., and Benovic, J.L. (1997). Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J. Biol. Chem. 272, 15011–15016.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Hwang, S.A., Jang, S.H., Chung, H.S., Bhat, M.B., and Karnik, S.S. (2007). Manifold active-state conformations in GPCRs: agonist-activated constitutively active mutant AT1 receptor preferentially couples to Gq compared to the wild-type AT1 receptor. FEBS Lett. 581, 2517–2522.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Bhatt, S., Shukla, A., Desnoyer, R.W., Yadav, S.P., Kim, M., Jang, S.H., and Karnik, S.S. (2008). Site-specific cleavage of G protein-coupled receptor-engaged β-arrestin: Influence of the AT1 receptor conformation on scissile site selection. J. Biol. Chem. 283, 21612–21620.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J., and Shenoy, S.K. (2005). Transduction of receptor signals by β-arrestins. Science 308, 512–517.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F.T., Krueger, K.M., Kendall, H.E., Daaka, Y., Fredericks, Z.L., Pitcher, J.A., and Lefkowitz, R.J. (1997). Clathrin-mediated endocytosis of the β-adrenergic receptor is regulated by phosphorylation/dephosphorylation of β-arrestin1. J. Biol. Chem. 272, 31051–31057.

    Article  PubMed  CAS  Google Scholar 

  • Marrero, M.B., Paxton, W.G., Schieffer, B., Ling, B.N., and Bernstein, K.E. (1996). Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell. Signal. 8, 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Marrero, M.B., Venema, V.J., Ju, H., Eaton, D.C., and Venema, R.C. (1998). Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am. J. Physiol. 275, C1216–1223.

    PubMed  CAS  Google Scholar 

  • Nobles, K.N., Guan, Z., Xiao, K., Oas, T.G., and Lefkowitz, R.J. (2007). The active conformation of β-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of β-arrestins 1 and 2. J. Biol. Chem. 282, 21370–21381.

    Article  PubMed  CAS  Google Scholar 

  • Oro, C., Qian, H., and Thomas, W.G. (2007). Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol. Ther. 113, 210–226.

    Article  PubMed  CAS  Google Scholar 

  • Pugazhenthi, S., Tanha, F., Dahl, B., and Khandelwal, R.L. (1996). Inhibition of a Src homology 2 domain containing protein tyrosine phosphatase by vanadate in the primary culture of hepatocytes. Arch. Biochem. Biophys. 335, 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Strack, V., Krutzfeldt, J., Kellerer, M., Ullrich, A., Lammers, R., and Haring, H.U. (2002). The Protein-tyrosine-phosphatase SHP2 is phosphorylated on serine residues 576 and 591 by protein kinase C isoforms α, β1, β2, and η. Biochemistry 41, 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskiy, S.A., Paz, C.L., Schubert, C., Hirsch, J.A., Sigler, P.B., and Gurevich, V.V. (1999). How does arrestin respond to the phosphorylated state of rhodopsin? J. Biol. Chem. 274, 11451–11454.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, K., Shenoy, S.K., Nobles, K., and Lefkowitz, R.J. (2004). Activation-dependent conformational changes in β-arrestin 2. J. Biol. Chem. 279, 55744–55753.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangWoo Lee.

About this article

Cite this article

Jang, SH., Hwang, S.A., Kim, M. et al. A protein tyrosine phosphatase inhibitor, pervanadate, inhibits angiotensin II-Induced β-arrestin cleavage. Mol Cells 28, 25–30 (2009). https://doi.org/10.1007/s10059-009-0104-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0104-1

Keywords

Navigation