Skip to main content
Log in

Application of mathematical analysis on dialysis

  • Review Paper
  • Artificial Kidney / Dialysis
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Hemodialysis is a blood purification method based on solute removal by diffusion and incorporates filtration to improve the efficiency of water removal and removal of high molecular weight substances. It is now a well-established treatment, due to the improved performance of dialyzers. This review outlines the development process of dialyzers, focusing on the application based on the mathematical analysis. First, phenomena occurring in the vicinity of the dialysis membrane are explained using a film model for diffusion and a gel polarization model for filtration. Then, currently established dialyzer designs are introduced using mathematical analysis. Furthermore, the design of dialyzers to promote internal filtration, the designs of hemodiafilters suitable for online hemodiafiltration (HDF), and the design of compact dialyzer for are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smith KA, Colton CK, Merrill EW, Evans LB. Convective transport in a batch dialyzer: determination of true membrane permeability from a single measurement. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:45–58.

    CAS  Google Scholar 

  2. Babb AL, Maurer CJ, Fry DL, Popovich RP, McKee RE. The determination of membrane permeabilities and solute diffusivities with applications to hemodialysis. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:59–68.

    CAS  Google Scholar 

  3. Hershey D, Cho SJ. Laminar flow of suspensions (blood): thickness and effective slip velocity of the film adjacent to the wall. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:140–5.

    CAS  Google Scholar 

  4. Kanamori T, Sakai K. Effect of mass transfer between plasma and erythrocyte interior on evaluating dialyzer performance: Artif. Organs Today. 1995;5:101–12.

    CAS  Google Scholar 

  5. Lightfoot EN. A formal description of ultrafiltration. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:79–84.

    Google Scholar 

  6. Keshaviah P. Hemofiltration. AIChE Symp Ser Chron Replace Kidney Funct. 1979;75:24–30.

    CAS  Google Scholar 

  7. Yoshida F. Rates of blood filtration. A brief review. Ind Eng Chem Fundam. 1986;25:633–5.

    Article  CAS  Google Scholar 

  8. Zydney AL, Colton CK. Continuous flow membrane plasmapheresis: theoretical models for flux and hemolysis prediction. Trans Am Soc Artif Intern Organs. 1982;28:408–12.

    CAS  PubMed  Google Scholar 

  9. Ohashi K, Tashiro K, Kushiya F, Matsumoto T, Yoshida S, Endo M, Horio T, Ozawa K, Sakai K. Rotation-induced Taylor vortex enhances filtrate flux in plasma separation. Trans Am Soc Artif Intern Organs. 1988;34:300–7.

    CAS  Google Scholar 

  10. Okazaki M, Yoshida F. Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Eng. 1976;4:138–50.

    Article  CAS  PubMed  Google Scholar 

  11. Mochizuki S, Zydney AL. Dextran transport through asymmetric ultrafiltration membranes: comparison with hydrodynamic models. J Membr Sci. 1992;68:21–41.

    Article  CAS  Google Scholar 

  12. Mochizuki S, Zydney AL. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes. Biotechnol Prog. 1992;8:553–61.

    Article  CAS  PubMed  Google Scholar 

  13. Abel JJ, Rowntree LG, Turner BB. On the removal of diffusible substances from the circulating blood of living animals by dialysis. J Pharmacol Exp Ther. 1914;5:275–316.

    CAS  Google Scholar 

  14. Grimsrud L, Babb AL. Velocity and concentration profiles for laminar flow of a Newtonian fluid in a dialyzer. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:20–31.

    CAS  Google Scholar 

  15. Wolf L Jr, Zaltzman S. Optimum geometry for artificial kidney dialyzers. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:104–11.

    Google Scholar 

  16. Shimizu S, Okazaki M, Yoshida F. Mass transfer in hemodialyzers. Jpn J Artif Organs. 1978;7:317–8 (in Japanese).

    Google Scholar 

  17. Sakai K. Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis. Nephrol Dial Transp. 1989;4:73–7.

    Google Scholar 

  18. Suzuki Y, Kohori F, Sakai K. Computer-aided design of hollow-fiber dialyzers. J Artif Organs. 2001;4:326–30.

    Article  Google Scholar 

  19. Noda I, Gryte CC. Mass transfer in regular arrays of hollow fibers in countercurrent dialysis. AIChE J. 1979;25:113–22.

    Article  CAS  Google Scholar 

  20. Fukuda M, Hosoya N, Kanamori T, Sakai K, Nishikido J, Watanabe T, Fushimi F. Determination of optimal fiber density of conventional and high performance dialyzers. Artif Organs Today. 1992;2:205–14.

    Google Scholar 

  21. Takesawa S, Terasawa M, Sakagami M, Kobayashi T, Hidai H, Sakai K. Nondestructive evaluation by X-ray computed tomography of dialysate flow pattern in capillary dialyzers. Trans Am Soc Artif Intern Organs. 1988;34:794–9.

    CAS  Google Scholar 

  22. Osuga T, Obata T, Ikehira H, Tanada S, Sasaki Y, Naito H. Dialysate pressure isobars in a hollow-fiber dialyzer determination from magnetic resonance imaging and numerical simulation of dialysate flow. Artif Organs. 1998;22:907–9.

    Article  CAS  PubMed  Google Scholar 

  23. Osuga T, Ikehira H, Obata T, Homma K, Yamane S, Naito H. Numerical simulation of dialysate flow in a hollow-fiber dialyzer. Johosyorigakkai Ronbunshi. 2002;43:2687–96 (in Japanese).

    Google Scholar 

  24. Osuga T, Obata T, Ikehira H. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging. Magn Reson Imaging. 2004;22:417–20.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto K, Matsuda M, Hirano A, Takizawa N, Iwashima S, Yakushiji T, Fukuda M, Miyasaka T, Sakai K. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets. Artif Organs. 2009;33:481–6.

    Article  PubMed  Google Scholar 

  26. Zydney AL. Bulk mass transport limitations during high-flux hemodialysis. Artif Organs. 1993;17:919–24.

    Article  CAS  PubMed  Google Scholar 

  27. Kanamori T, Mizoguchi K. Analysis of solute transport by diffusion and convection in hollow-fiber hemodialyzer using the finite element method. Kagaku-Kogaku Ronbunsyu. 2011;37:91–5 (in Japanese).

    Article  CAS  Google Scholar 

  28. Sano Y, Nakayama A. A porous media approach for analyzing a countercurrent dialyzer system. J Heat Transf. 2012;134:072602.

    Article  Google Scholar 

  29. Sano Y. Operating conditions for hemodialysis treatment based on the volume averaging theory. Interdiscip Inf Sci. 2016;22:215–27.

    Google Scholar 

  30. Donato D, Boschetti-de-Fierro A, Zweigart C, Kolb M, Eloot S, Storr M, Krause B, Leypoldt K, Segers P. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model. J Membr Sci. 2017;541:519–28.

    Article  CAS  Google Scholar 

  31. Stiller S, Mann H, Brunner H. Backfiltration in hemodialysis with highly permeable membranes. Contr Nephrol. 1985;46:23–32.

    Article  CAS  Google Scholar 

  32. Hosoya N, Kanamori T, Sakai K. Optimal design of a high-performance dialyzer involving backfiltration. Artif Organs Today. 1993;2:287–98.

    CAS  Google Scholar 

  33. Mineshima M, Ishimori I, Ishida K, et al. Effects of internal filtration on the solute removal efficiency of a dialyzer. ASAIO J. 2000;46:456–60.

    Article  CAS  PubMed  Google Scholar 

  34. Sekino M, Yagi T, Tamamura N. New analytical model and its applications for hemodiafilter. Kagaku Kogaku Ronbunsyu. 2010;36:34–40 (in Japanese).

    Article  CAS  Google Scholar 

  35. Rautenbach R. Albrecht R. 5.1 Tubular module. In: Membrane Processes. Wiley, New York, pp. 135–137. 1989

  36. Sekino M. Effect of ultrafiltration in hemodiafiltration system. Kagaku Kogaku Ronbunsyu. 2012;38:34–40 (in Japanese).

    Article  Google Scholar 

  37. Yamashita AC. Development of the hemodialyzer and hemodiafilter of the near future. Jpn J Clin Dial. 2020;36:439–44 (in Japanese).

    Google Scholar 

  38. Yamashita AC. Diafilters for predilution and postdilution on-line hemodiafiltration. Blood Purif. 2013;35:29–33.

    Article  CAS  PubMed  Google Scholar 

  39. Dorson A, Markovitz M. A pulsating ultrafiltration artificial kidney. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:85–9.

    CAS  Google Scholar 

  40. Bixler HJ, Nelsen LM, Besarab A. The Diaphron hemodiafilter: an alternative to dialysis for extracorporeal blood purification. Eng Prog Symp Ser Artif Kidney. 1968;64:90–103.

    CAS  Google Scholar 

  41. Kokubo K, Kobayashi K, Yamane T, Yamamoto K, Matsuda K. Portable blood purification device available in the event of natural disaster. Jpn J Clin Dial. 2020;36:459–64 (in Japanese).

    Google Scholar 

  42. Kokubo K, Kurihara Y, Kobayashi K, Moriguchi T, Matsuda K, Kobayashi H. Development of a blood purifier using thin hollow fiber membranes. Jpn J Artif Organs. 2014;43:238–41 (in Japanese).

    Google Scholar 

  43. Kurihara Y, Kokubo K, Kobayashi K, Ushiroda Y, Tsukao H, Yanagisawa M, Goto J, Harii N, Moriguchi T, Matsuda K, Kobayashi H. Development of hemofilter using fine diameter fibers. Ther Eng. 2015;27:44–7 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the idea for the review paper, and also collected the papers related. The first draft of the manuscript was written by TM, followed by KS’s revision. Both authors approved the final manuscript.

Corresponding authors

Correspondence to Takehiro Miyasaka or Kiyotaka Sakai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This review paper is based on the Japanese version by Takehiro Miyasaka of Jpn J Artif Organs 2020;49(3):191–4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyasaka, T., Sakai, K. Application of mathematical analysis on dialysis. J Artif Organs 26, 1–11 (2023). https://doi.org/10.1007/s10047-022-01359-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-022-01359-8

Keywords

Navigation