Skip to main content

Advertisement

Log in

Nitric oxide delivery using nitric oxide-containing fluid in continuous hemofiltration: an in vitro study

  • Original Article
  • Artificial Kidney / Dialysis
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Administering nitrite has therapeutic effects on ischemic conditions wherein the enzymatic production of nitric oxide depends on oxygen. We developed a supplemental fluid containing nitric oxide (NO) and determined the clearance and supply between the pre- and post-dilution modes of continuous hemofiltration in vitro. Nitric oxide gas, 1000 mL or 2000 mL, at a concentration of 1000 ppm, was injected into 2020 mL of conventional supplemental fluid (experimental solution). The same volume of nitrogen gas was injected into the supplemental fluid (control solution). NO concentrations were measured using commercially available NO assay kit. Pre- or post-dilution continuous hemofiltration was performed using a control solution as supplemental fluid to determine the NO clearance. We determined the NO concentration of the outlet blood circuit to confirm the NO supply using the experimental solution as supplemental fluid. Also, using the bovine blood, white blood cell and platelet change rates and the dialysis membrane water flux during continuous hemodiafiltration were evaluated ex vivo as index of the biocompatibilities of a nitric oxide-containing solution. NO was not detected in the control solutions. The experimental solutions significantly increased in nitric oxide concentrations. NO clearance increased as the increase in supplemental and ultrafiltration flow rates using the control solution as supplemental fluid. However, using the experimental solution as supplemental fluid, nitric oxide supply showed a similar trend of NO clearance. Without any changes in biocompatibility using the supplemental fluid containing NO, it could maintain intravascular nitric oxide during continuous renal replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blood AB, Power GG. Nitrite: on the journey from toxin to therapy. Clin Pharmacokinet. 2015;54:221–3. https://doi.org/10.1007/s40262-014-0231-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blood AB. The medicinal chemistry of nitrite as a source of nitric oxide signaling. Curr Top Med Chem. 2017;17:1758–68. https://doi.org/10.2174/1568026617666161116145046.

    Article  CAS  PubMed  Google Scholar 

  3. Calvert JW, Lefer DJ. Myocardial protection by nitrite. Cardiovasc Res. 2009;83:195–203. https://doi.org/10.1093/cvr/cvp079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dejam A, Hunter CJ, Schechter AN, Gladwin MT. Emerging role of nitrite in human biology. Blood Cells Mol Dis. 2004;32:423–9. https://doi.org/10.1016/j.bcmd.2004.02.002.

    Article  CAS  PubMed  Google Scholar 

  5. Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2007;104:19144–9. https://doi.org/10.1073/pnas.0706579104.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, van Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL, Weitzberg E. Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol. 2009;5:865–9. https://doi.org/10.1038/nchembio.260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bryan NS, Torregrossa AC, Mian AI, Berkson DL, Westby CM, Moncrief JW. Acute effects of hemodialysis on nitrite and nitrate: potential cardiovascular implications in dialysis patients. Free Radic Biol Med. 2013;58:46–51. https://doi.org/10.1016/j.freeradbiomed.2013.01.020.

    Article  CAS  PubMed  Google Scholar 

  8. Heredia Martinez A, Rosa Diez G, Ferraris V, Coccia PA, Ferraris JR, Checa A, Wheelock CE, Lundberg JO, Weitzberg E, Carlström M, Krmar RT. Removal of nitrate and nitrite by hemodialysis in end-stage renal disease and by sustained low-efficiency dialysis in acute kidney injury. Nitric Oxide. 2020;98:33–40. https://doi.org/10.1016/j.niox.2020.02.004.

    Article  CAS  PubMed  Google Scholar 

  9. Chihara S, Masuda Y, Yamakage M. Experimental and clinical evaluation of predilution and postdilution continuous venovenous hemofiltration on clearance characteristics. ASAIO J. 2017;63:229–34. https://doi.org/10.1097/MAT.0000000000000468.

    Article  CAS  PubMed  Google Scholar 

  10. Tange Y, Yoshitake S, Watanabe W. Data on producing an infusion fluid that contains nitric oxide. Data Brief. 2020;28: 105011. https://doi.org/10.1016/j.dib.2019.105011.

    Article  PubMed  Google Scholar 

  11. Tange Y, Takesawa S, Yoshitake S. Asymmetric triacetate membrane keeps high water flux during ultrafiltration: in vitro study. J Artif Organs. 2017;20:399–402. https://doi.org/10.1007/s10047-017-0971-8.

    Article  CAS  PubMed  Google Scholar 

  12. Zuckerbraun BS, Shiva S, Ifedigbo E, Mathier MA, Mollen KP, Rao J, Bauer PM, Choi JJ, Curtis E, Choi AM, Gladwin MT. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation. 2010;121:98–109. https://doi.org/10.1161/CIRCULATIONAHA.109.891077.

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide. 2019;85:35–43. https://doi.org/10.1016/j.niox.2019.01.015.

    Article  CAS  PubMed  Google Scholar 

  14. Parakaw T, Suknuntha K, Vivithanaporn P, Schlagenhauf A, Topanurak S, Fucharoen S, Pattanapanyasat K, Schechter A, Sibmooh N, Srihirun S. Platelet inhibition and increased phosphorylated vasodilator-stimulated phosphoprotein following sodium nitrite inhalation. Nitric Oxide. 2017;66:10–6. https://doi.org/10.1016/j.niox.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  15. Carlström M, Cananau C, Checa A, Wide K, Sartz L, Svensson A, Wheelock CE, Westphal S, Békássy Z, Bárány P, Lundberg JO, Hansson S, Weitzberg E, Krmar RT. Peritoneal dialysis impairs nitric oxide homeostasis and may predispose infants with low systolic blood pressure to cerebral ischemia. Nitric Oxide. 2016;58:1–9. https://doi.org/10.1016/j.niox.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  16. Carlström M, Wide K, Lundvall M, Cananau C, Svensson A, Lundberg JO, Bárány P, Krmar RT. Plasma nitrate/nitrite removal by peritoneal dialysis might predispose infants with low blood pressure to cerebral ischaemia. Clin Kidney J. 2015;8:215–8. https://doi.org/10.1093/ckj/sfv009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate–nitrite–nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med. 2019;285:2–18. https://doi.org/10.1111/joim.12818.

    Article  CAS  PubMed  Google Scholar 

  18. Brücken A, Bleilevens C, Berger P, Nolte K, Gaisa NT, Rossaint R, Marx G, Derwall M, Fries M. Effects of inhaled nitric oxide on outcome after prolonged cardiac arrest in mild therapeutic hypothermia treated rats. Sci Rep. 2018;8:6743. https://doi.org/10.1038/s41598-018-25213-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morgan RW, Sutton RM, Karlsson M, Lautz AJ, Mavroudis CD, Landis WP, Lin Y, Jeong S, Craig N, Nadkarni VM, Kilbaugh TJ, Berg RA. Pulmonary vasodilator therapy in shock-associated cardiac arrest. Am J Respir Crit Care Med. 2018;197:905–12. https://doi.org/10.1164/rccm.201709-1818OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lei C, Berra L, Rezoagli E, Yu B, Dong H, Yu S, Hou L, Chen M, Chen W, Wang H, Zheng Q, Shen J, Jin Z, Chen T, Zhao R, Christie E, Sabbisetti VS, Nordio F, Bonventre JV, Xiong L, Zapol WM. Nitric oxide decreases acute kidney injury and Stage 3 chronic kidney disease after cardiac surgery. Am J Respir Crit Care Med. 2018;198:1279–87. https://doi.org/10.1164/rccm.201710-2150OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho XL, Loke WM. Dietary plant sterols supplementation increases in vivo nitrite and nitrate production in healthy adults: a randomized, controlled study. J Food Sci. 2017;82:1750–6. https://doi.org/10.1111/1750-3841.13752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cantow K, Flemming B, Ladwig-Wiegard M, Persson PB, Seeliger E. Low dose nitrite improves reoxygenation following renal ischemia in rats. Sci Rep. 2017;7:14597. https://doi.org/10.1038/s41598-017-15058-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: a better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol. 2018;102:1–10. https://doi.org/10.1016/j.vph.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  24. Togo K, Yamamoto M, Ono T, Imai M, Akiyama K, Ebine K, Yamashita AC. Comparison of biocompatibility in polysulfone dialysis membranes with different sterilization. Hemodial Int. 2018;22:S10–4. https://doi.org/10.1111/hdi.12698.

    Article  PubMed  Google Scholar 

Download references

Funding

This research has not received any specific grant from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

YT and SY contributed to the conception and design of the study, data analysis and interpretation, and drafting of the manuscript. WW and YT contributed to determining the sample concentrations. All authors are accountable for all aspects of the study; they worked on and approved the final version to be submitted.

Corresponding authors

Correspondence to Yoshihiro Tange or Shigenori Yoshitake.

Ethics declarations

Conflict of interest

The authors report no proprietary or commercial interest for any product mentioned or any concept discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tange, Y., Watanabe, W. & Yoshitake, S. Nitric oxide delivery using nitric oxide-containing fluid in continuous hemofiltration: an in vitro study. J Artif Organs 25, 66–71 (2022). https://doi.org/10.1007/s10047-021-01284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-021-01284-2

Keywords

Navigation