Skip to main content

Advertisement

Log in

Fluid dwell impact induces peritoneal fibrosis in the peritoneal cavity reconstructed in vitro

  • Original Article
  • Artificial Kidney / Dialysis
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Peritoneal fluid dwell impacts the peritoneum by creating an abnormal physiological microenvironment. Little is known about the precise effects of fluid dwell on the peritoneum, and no adequate in vitro models to analyze the impact of fluid dwell have been established. In this study, we developed a peritoneal fluid dwell model combined with an artificial peritoneal cavity and fluid stirring generation system to clarify the effects of different dwelling solutions on the peritoneum over time. To replicate the peritoneal cavity, we devised a reconstructed peritoneal cavity utilizing a mesothelial layer, endothelial layer, and collagen membrane chamber. The reconstructed peritoneal cavity was infused with Dulbecco’s modified Eagle’s medium, saline, lactated Ringer’s solution or peritoneal dialysis solution with repeated 4-h dwells for 10 or 20 consecutive days. The above-described solutions induced epithelial–mesenchymal transition (EMT) and hyperplasia of mesothelial cells. All solution types modulated nitric oxide synthase activities in mesothelial and endothelial cells and nitric oxide concentrations in dwelling solutions. Inhibition of nitric oxide synthase activity acted synergistically on mesothelial EMT and hyperplasia. The present findings suggest that solutions infused into the peritoneal cavity are likely to affect nitric oxide production in the peritoneum and promote peritoneal fibrosis. Our newly devised peritoneal cavity model should be a promising tool for understanding peritoneal cellular kinetics and homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. García-López E, Lindholm B, Davies S. An update on peritoneal dialysis solutions. Nat Rev Nephrol. 2012;8:224–33.

    Article  PubMed  Google Scholar 

  2. Yamaguchi H, Kojima H, Takezawa T. Vitrigel-eye irritancy test method using HCE-T cells. Toxicol Sci. 2013;135:347–55.

    Article  CAS  PubMed  Google Scholar 

  3. Aoki S, Makino J, Nagashima A, Takezawa T, Nomoto N, Uchihashi K, et al. Fluid flow stress affects peritoneal cell kinetics: possible pathogenesis of peritoneal fibrosis. Perit Dial Int. 2011;31:466–76.

    Article  CAS  PubMed  Google Scholar 

  4. Jalali S, Li YS, Sotoudeh M, Yuan S, Li S, Chien S, et al. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18:227–34.

    Article  CAS  PubMed  Google Scholar 

  5. Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: inhibitory crosstalk among MAPK family members. Proc Natl Acad Sci USA. 2001;98:6476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol. 2000;11:717–28.

    CAS  PubMed  Google Scholar 

  7. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ni J, Moulin P, Gianello P, Feron O, Balligand J-L, Devuyst O. Mice that lack endothelial nitric oxide synthase are protected against functional and structural modifications induced by acute peritonitis. J Am Soc Nephrol. 2003;14:3205–16.

    Article  CAS  PubMed  Google Scholar 

  9. Chen J-Y, Chiu J-H, Chen H-L, Chen T-W, Yang W-C, Yang A-H. Human peritoneal mesothelial cells produce nitric oxide: induction by cytokines. Perit Dial Int. 2000;20:772–7.

    CAS  PubMed  Google Scholar 

  10. Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 2004;66:1257–65.

    Article  CAS  PubMed  Google Scholar 

  11. White R, Barefield D, Ram S, Work J. Peritoneal dialysis solutions reverse the hemodynamic effects of nitric oxide synthesis inhibitors. Kidney Int. 1995;48:1986–93.

    Article  CAS  PubMed  Google Scholar 

  12. Reimann D, Dachs D, Meye C, Gross P. Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int. 2004;24:378–84.

    CAS  PubMed  Google Scholar 

  13. Aoki S, Takezawa T, Oshikata-Miyazaki A, Ikeda S, Kuroyama H, Chimuro T, et al. Epithelial-to-mesenchymal transition and slit function of mesothelial cells are regulated by the cross talk between mesothelial cells and endothelial cells. Am J Physiol Renal Physiol. 2014;306:F116–22.

    Article  CAS  PubMed  Google Scholar 

  14. Yáñez-Mó M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Domínguez-Jiménez C, Jiménez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.

    Article  PubMed  Google Scholar 

  15. Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol. 2007;18:2004–13.

    Article  CAS  PubMed  Google Scholar 

  16. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.

    Article  CAS  PubMed  Google Scholar 

  17. Kadoya H, Satoh M, Nagasu H, Sasaki T, Kashihara N. Deficiency of endothelial nitric oxide signaling pathway exacerbates peritoneal fibrosis in mice. Clin Exp Nephrol. 2014;. doi:10.1007/s10157-014-1029-3.

    PubMed  Google Scholar 

  18. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA. 2001;98:2604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devuyst O. New insights in the molecular mechanisms regulating peritoneal permeability. Nephrol Dial Transplant. 2002;17:548–51.

    Article  CAS  PubMed  Google Scholar 

  21. Rizzo V, McIntosh DP, Oh P, Schnitzer JE. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem. 1998;273:34724–9.

    Article  CAS  PubMed  Google Scholar 

  22. Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285:C499–508.

    Article  CAS  PubMed  Google Scholar 

  23. Polubinska A, Breborowicz A, Staniszewski R, Oreopoulos DG. Normal saline induces oxidative stress in peritoneal mesothelial cells. J Pediatr Surg. 2008;43:1821–6.

    Article  PubMed  Google Scholar 

  24. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.

    Article  CAS  PubMed  Google Scholar 

  25. Noh H, Kim J, Han K, Lee G, Song J, Chung S, et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int. 2006;69:2022–8.

    Article  CAS  PubMed  Google Scholar 

  26. Cooke M, John P, Dzau M, Victor J. Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med. 1997;48:489–509.

    Article  CAS  PubMed  Google Scholar 

  27. Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int. 1995;47:282–93.

    Article  CAS  PubMed  Google Scholar 

  28. Topley N, Kaur D, Petersen MM, Jorres A, Passlick-Deetjen J, Coles GA, et al. Biocompatibility of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int. 1996;49:1447–56.

    Article  CAS  PubMed  Google Scholar 

  29. Ogata S, Naito T, Yorioka N, Kiribayashi K, Kuratsune M, Kohno N. Effect of lactate and bicarbonate on human peritoneal mesothelial cells, fibroblasts and vascular endothelial cells, and the role of basic fibroblast growth factor. Nephrol Dial Transplant. 2004;19:2831–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank H. Ideguchi, M. Nishida, F. Mutoh, S. Nakahara, T. Takezawa (Teikyo University), and I. Nanbu for excellent technical assistance. We are grateful to Mr. K. Tokaichi for refining the English of the manuscript. This work was supported in part by an Agri-Health Translational Research Project (No. 6110) from the MAFF of Japan and JSPS KAKENHI Grant Number 25461701.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shigehisa Aoki or Mitsuru Noguchi.

Ethics declarations

Conflicts of interest

H. Kuroyama and T. Chimuro are employees of Kanto Chemical Co. Inc. The other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, S., Noguchi, M., Takezawa, T. et al. Fluid dwell impact induces peritoneal fibrosis in the peritoneal cavity reconstructed in vitro. J Artif Organs 19, 87–96 (2016). https://doi.org/10.1007/s10047-015-0864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0864-7

Keywords

Navigation