Skip to main content
Log in

Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Silk fibroin fiber has a long history of use in sutures because of its high strength and toughness. In the work reported in this paper, small-diameter vascular grafts 1.5 mm in diameter and 10 mm in length were prepared by coating a double-raschel knitted silk fiber graft with silk fibroin aqueous solution containing poly(ethylene glycol diglycidyl ether) as a cross-linking agent. The most important character of silk fibroin graft is remodeling, which is never observed for polyester fiber or expanded polytetrafluoroethylene grafts. The double-raschel knitted silk fiber graft with coating has sufficient physical strength and protects the ladder from the end in the implantation process. The coating also gives protection against leakage of blood from the graft, and elasticity to the graft. Eight weeks after implantation of the grafts in rat abdominal aorta, early formation of thrombosis was avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matsuura N, Sawa Y. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg. 2008;136:900–7.

    Article  PubMed  Google Scholar 

  2. Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog Polym Sci. 2008;33:853–74.

    Article  CAS  Google Scholar 

  3. Francois S, Chakfe N, Durand B, Laroche G. A poly(l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. Acta Biomater. 2009;5:2418–28.

    Article  PubMed  CAS  Google Scholar 

  4. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose. 2009;16:877–85.

    Article  CAS  Google Scholar 

  5. Qiu YZ, Zhang N, Kang Q, An YH, Wen XJ. Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. J Biomed Mater Res B Appl Biomater. 2009;90B:668–78.

    Article  CAS  Google Scholar 

  6. Liu Y, Vrana NE, Cahill PA, McGuinness GB. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater. 2009;90B:492–502.

    Article  CAS  Google Scholar 

  7. Mirensky TL, Nelson GN, Brennan MP, Roh JD, Hibino N, Yi T, Shinoka T, Breuer CK. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg. 2009;44:1127–33.

    Article  PubMed  Google Scholar 

  8. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93A:716–23.

    CAS  Google Scholar 

  9. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24:401–16.

    Article  PubMed  CAS  Google Scholar 

  10. Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51:155–64.

    Article  PubMed  Google Scholar 

  11. Pektok E, Cikirikcioglu M, Tille JC, Kalangos A, Walpoth BH. Alcohol pretreatment of small-diameter expanded polytetrafluoroethylene grafts: quantitative analysis of graft healing characteristics in the rat abdominal aorta interposition model. Artif Organs. 2009;33:532–7.

    Article  PubMed  CAS  Google Scholar 

  12. CDRH. Guidance for industry and FDA staff guidance document for vascular prostheses. 1999.

  13. Hayashi F, Okuda Y, Nakata M, Natori K. Development of small-diameter ePTFE vascular graft. SEI Tech Rev. 2002;161:102–6.

    CAS  Google Scholar 

  14. Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res. 1995;29:1215–21.

    Article  PubMed  CAS  Google Scholar 

  15. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54:139–48.

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials. 2009;30:1299–308.

    Article  PubMed  CAS  Google Scholar 

  17. Mandal BB, Kundu SC. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Biomaterials. 2009;30:5170–7.

    Article  PubMed  CAS  Google Scholar 

  18. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26:147–55.

    Article  PubMed  CAS  Google Scholar 

  19. Horan RL, Antle K, Collette AL, Huang YZ, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials. 2005;26:3385–93.

    Article  PubMed  CAS  Google Scholar 

  20. Min SJ, Gao X, Liu L, Tian L, Zhu LJ, Zhang HP, Yao J. Fabrication and characterization of porous tubular silk fibroin scaffolds. J Biomater Sci Polym Ed. 2009;20:1961–74.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao CH, Yao JM, Masuda H, Kishore R, Asakura T. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Biopolymers. 2003;69:253–9.

    Article  PubMed  CAS  Google Scholar 

  22. Abbott WM, Megerman J, Hasson JE, Litalien G, Warnock DF. Effect of compliance mismatch on vascular graft patency. J Vasc Surg. 1987;5:376–82.

    Article  PubMed  CAS  Google Scholar 

  23. Losi P, Lombardi S, Briganti E, Soldani G. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials. 2004;25:4447–55.

    Article  PubMed  CAS  Google Scholar 

  24. Sarkar S, Sales KM, Hamilton G, Seifalian AM. Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B Appl Biomater. 2007;82B:100–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TA acknowledges support from Grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Agri-Health Translational Research Project), Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Culture and Sports of Japan (18105007), and Promotion of Basic Research Activities for Innovative Biosciences, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Asakura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, T., Sato, M., Nakazawa, Y. et al. Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. J Artif Organs 14, 89–99 (2011). https://doi.org/10.1007/s10047-011-0554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-011-0554-z

Keywords

Navigation